BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8341592)

  • 1. The role of the preserved sequences of Dam methylase.
    Guyot JB; Grassi J; Hahn U; Guschlbauer W
    Nucleic Acids Res; 1993 Jul; 21(14):3183-90. PubMed ID: 8341592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N6-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding.
    Kossykh VG; Schlagman SL; Hattman S
    Nucleic Acids Res; 1993 Oct; 21(20):4659-62. PubMed ID: 8233814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the function of conserved sequence motifs in the T4 Dam-[N6-adenine] and EcoRII [C5-cytosine] DNA methyltransferases.
    Kossykh VG; Schlagman SL; Hattman S
    Gene; 1995 May; 157(1-2):125-6. PubMed ID: 7607473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dam methyltransferase from Escherichia coli: sequence of a peptide segment involved in S-adenosyl-methionine binding.
    Wenzel C; Guschlbauer W
    Nucleic Acids Res; 1993 Sep; 21(19):4604-9. PubMed ID: 8233797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of conserved amino acid residues in DNA methyltransferases investigated by site-directed mutagenesis of the EcoRV adenine-N6-methyltransferase.
    Roth M; Helm-Kruse S; Friedrich T; Jeltsch A
    J Biol Chem; 1998 Jul; 273(28):17333-42. PubMed ID: 9651316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase.
    Liebert K; Hermann A; Schlickenrieder M; Jeltsch A
    J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase.
    Hacker C; Glinski M; Hornbogen T; Doller A; Zocher R
    J Biol Chem; 2000 Oct; 275(40):30826-32. PubMed ID: 10887181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase.
    Ahmad I; Rao DN
    J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: functional analysis of conserved aromatic amino acids in Region 1.
    Nes WD; Sinha A; Jayasimha P; Zhou W; Song Z; Dennis AL
    Arch Biochem Biophys; 2006 Apr; 448(1-2):23-30. PubMed ID: 16271698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat guanidinoacetate methyltransferase: mutation of amino acids within a common sequence motif of mammalian methyltransferase does not affect catalytic activity but alters proteolytic susceptibility.
    Gomi T; Tanihara K; Date T; Fujioka M
    Int J Biochem; 1992 Oct; 24(10):1639-49. PubMed ID: 1397491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.
    Maier JA; Albu RF; Jurkowski TP; Jeltsch A
    Biochimie; 2015 Dec; 119():60-7. PubMed ID: 26475175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the S-adenosylmethionine-binding site of rat guanidinoacetate methyltransferase. Effect of site-directed mutagenesis of residues that are conserved across mammalian non-nucleic acid methyltransferases.
    Hamahata A; Takata Y; Gomi T; Fujioka M
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):141-5. PubMed ID: 8694756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retron for the 67-base multicopy single-stranded DNA from Escherichia coli: a potential transposable element encoding both reverse transcriptase and Dam methylase functions.
    Hsu MY; Inouye M; Inouye S
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9454-8. PubMed ID: 1701261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of conserved motifs in type III restriction-modification enzymes.
    Saha S; Ahmad I; Reddy YV; Krishnamurthy V; Rao DN
    Biol Chem; 1998; 379(4-5):511-7. PubMed ID: 9628345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the DNA methylase Eco dam pair nucleotide sequences to form site-specific duplexes?
    Buryanov YaI ; Zinoviev VV; Vienozhinskis MT; Malygin EG; Nesterenko VF; Popov SG; Gorbunov YuA
    FEBS Lett; 1984 Mar; 168(1):166-8. PubMed ID: 6368265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure prediction of the EcoRV DNA methyltransferase based on mutant profiling, secondary structure analysis, comparison with known structures of methyltransferases and isolation of catalytically inactive single mutants.
    Jeltsch A; Sobotta T; Pingoud A
    Protein Eng; 1996 May; 9(5):413-23. PubMed ID: 8795041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding.
    Kossykh VG; Schlagman SL; Hattman S
    Nucleic Acids Res; 1993 Jul; 21(15):3563-6. PubMed ID: 16617501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis.
    Nes WD; Jayasimha P; Zhou W; Kanagasabai R; Jin C; Jaradat TT; Shaw RW; Bujnicki JM
    Biochemistry; 2004 Jan; 43(2):569-76. PubMed ID: 14717613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase.
    Gowher H; Loutchanwoot P; Vorobjeva O; Handa V; Jurkowska RZ; Jurkowski TP; Jeltsch A
    J Mol Biol; 2006 Mar; 357(3):928-41. PubMed ID: 16472822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli.
    Bergerat A; Guschlbauer W
    Nucleic Acids Res; 1990 Aug; 18(15):4369-75. PubMed ID: 2201947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.