These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 834246)

  • 21. Mapping of the auditory area in the cerebellar vermis and hemispheres of the little brown bats, Myotis lucifugus.
    Jen PH; Vater M; Harnischfeger G; Rübsamen R
    Brain Res; 1981 Aug; 219(1):156-61. PubMed ID: 7260625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of high duty cycle echolocation in bats.
    Fenton MB; Faure PA; Ratcliffe JM
    J Exp Biol; 2012 Sep; 215(Pt 17):2935-44. PubMed ID: 22875762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory scene analysis by echolocation in bats.
    Moss CF; Surlykke A
    J Acoust Soc Am; 2001 Oct; 110(4):2207-26. PubMed ID: 11681397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K; Miyamoto T; Kobayasi KI; Hiryu S
    Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FM signals produce robust paradoxical latency shifts in the bat's inferior colliculus.
    Wang X; Galazyuk AV; Feng AS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):13-20. PubMed ID: 17115224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laryngeally echolocating bats.
    Wittrock U
    Nature; 2010 Aug; 466(7309):E6; discussion E7. PubMed ID: 20724991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosonar signals and cerebellar auditory neurons of the mustached bat.
    Horikawa J; Suga N
    J Neurophysiol; 1986 Jun; 55(6):1247-67. PubMed ID: 3734857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency modulation patterns in the echolocation signals of two vespertilionid bats.
    Boonman A; Schnitzler HU
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):13-21. PubMed ID: 15568143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger].
    Tang J; Fu ZY; Wu FJ
    Sheng Li Xue Bao; 2010 Oct; 62(5):469-77. PubMed ID: 20945051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency and amplitude representations in anterior primary auditory cortex of the mustached bat.
    Asanuma A; Wong D; Suga N
    J Neurophysiol; 1983 Nov; 50(5):1182-96. PubMed ID: 6644366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Echolocation by young bats on their initial and subsequent flights.
    Gould E; Cooley B; Barnick P
    Dev Psychobiol; 1981 Jan; 14(1):41-54. PubMed ID: 7274576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the FM component in shaping the number of impulses and response latency of inferior collicular neurons of Hipposideros armiger elicited by CF-FM sounds.
    Fu ZY; Xu N; Wang J; Tang J; Jen PH; Chen QC
    Neurosci Lett; 2014 Jul; 576():97-101. PubMed ID: 24915297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus.
    Casseday JH; Covey E; Grothe B
    J Neurophysiol; 1997 Mar; 77(3):1595-605. PubMed ID: 9084622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The personalized auditory cortex of the mustached bat: adaptation for echolocation.
    Suga N; Niwa H; Taniguchi I; Margoliash D
    J Neurophysiol; 1987 Oct; 58(4):643-54. PubMed ID: 3681389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bats avoid moving objects more successfully than stationary ones.
    Jen PH; McCarty JK
    Nature; 1978 Oct; 275(5682):743-4. PubMed ID: 703838
    [No Abstract]   [Full Text] [Related]  

  • 37. Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus.
    Fuzessery ZM
    J Neurophysiol; 1994 Sep; 72(3):1061-79. PubMed ID: 7807196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of broadcast harmonics in echo delay perception by big brown bats.
    Stamper SA; Bates ME; Benedicto D; Simmons JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):79-89. PubMed ID: 18989677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
    Razak KA
    Brain Behav Evol; 2018; 91(2):97-108. PubMed ID: 29874652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound azimuth selectivity of inferior collicular neurons in juvenile bats, Myotis chinensis.
    Zhou X; Sun X
    Neuroreport; 2006 Sep; 17(13):1411-5. PubMed ID: 16932149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.