These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8342631)

  • 1. Contribution of prostaglandins to exercise-induced vasodilation in humans.
    Wilson JR; Kapoor SC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H171-5. PubMed ID: 8342631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of potassium to exercise-induced vasodilation in humans.
    Wilson JR; Kapoor SC; Krishna GG
    J Appl Physiol (1985); 1994 Dec; 77(6):2552-7. PubMed ID: 7896590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans.
    Wilson JR; Kapoor S
    J Appl Physiol (1985); 1993 Dec; 75(6):2740-4. PubMed ID: 8125898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous release of vasodilator prostanoids contributes to regulation of resting forearm blood flow in humans.
    Duffy SJ; Tran BT; New G; Tudball RN; Esler MD; Harper RW; Meredith IT
    Am J Physiol; 1998 Apr; 274(4):H1174-83. PubMed ID: 9575920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostaglandin production contributes to exercise-induced vasodilation in heart failure.
    Lang CC; Chomsky DB; Butler J; Kapoor S; Wilson JR
    J Appl Physiol (1985); 1997 Dec; 83(6):1933-40. PubMed ID: 9390965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.
    Mortensen SP; Nyberg M; Thaning P; Saltin B; Hellsten Y
    Hypertension; 2009 Jun; 53(6):993-9. PubMed ID: 19433775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the role of endogenous prostaglandins in the development of exercise-induced and post-occlusive hyperemia in human limbs.
    Nowak J; Wennmalm A
    Acta Physiol Scand; 1979 Jul; 106(3):365-9. PubMed ID: 506771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans.
    Schrage WG; Eisenach JH; Joyner MJ
    J Physiol; 2007 Feb; 579(Pt 1):227-36. PubMed ID: 17138603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contribution of vasodilator prostanoids and NO to metabolic vasodilation in the human forearm.
    Duffy SJ; New G; Tran BT; Harper RW; Meredith IT
    Am J Physiol; 1999 Feb; 276(2):H663-70. PubMed ID: 9950869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans.
    Saunders NR; Dinenno FA; Pyke KE; Rogers AM; Tschakovsky ME
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H214-20. PubMed ID: 15345484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostaglandin inhibition causes an increase in reactive hyperaemia after ischaemic exercise in human forearm.
    Naylor HL; Shoemaker JK; Brock RW; Hughson RL
    Clin Physiol; 1999 May; 19(3):211-20. PubMed ID: 10361611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inhibition of ATP-sensitive potassium channels on metabolic vasodilation in the human forearm.
    Farouque HM; Meredith IT
    Clin Sci (Lond); 2003 Jan; 104(1):39-46. PubMed ID: 12519086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of nitric oxide and vasodilatory prostanoids to bradykinin-mediated vasodilation in Type 1 diabetes.
    Wotherspoon F; Browne DL; Meeking DR; Allard SE; Munday LJ; Shaw KM; Cummings MH
    Diabet Med; 2005 Jun; 22(6):697-702. PubMed ID: 15910619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans.
    Saunders NR; Tschakovsky ME
    J Appl Physiol (1985); 2004 Sep; 97(3):1143-51. PubMed ID: 15155716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of nitric oxide to exercise hyperemia in the human forearm.
    Gordon MB; Jain R; Beckman JA; Creager MA
    Vasc Med; 2002 Aug; 7(3):163-8. PubMed ID: 12553738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandins contribute to the vasodilation induced by nicotinic acid.
    Eklund B; Kaijser L; Nowak J; Wennmalm A
    Prostaglandins; 1979 Jun; 17(6):821-30. PubMed ID: 504690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm.
    Engelke KA; Halliwill JR; Proctor DN; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 1996 Oct; 81(4):1807-14. PubMed ID: 8904603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cigarette smoking, prostaglandins and reactive hyperemia.
    Wennmalm A
    Prostaglandins Med; 1979 Dec; 3(6):321-6. PubMed ID: 550158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans.
    Schrage WG; Joyner MJ; Dinenno FA
    J Physiol; 2004 Jun; 557(Pt 2):599-611. PubMed ID: 15047770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.