These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8342649)

  • 1. Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF.
    Steenbergen JM; Bohlen HG
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H323-8. PubMed ID: 8342649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles.
    Falcone JC; Bohlen HG
    Am J Physiol; 1990 May; 258(5 Pt 2):H1515-23. PubMed ID: 2337183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent dilation to L-arginine in isolated rat skeletal muscle arterioles.
    Sun D; Messina EJ; Koller A; Wolin MS; Kaley G
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1211-6. PubMed ID: 1566902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles.
    Bohlen HG; Lash JM
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H219-25. PubMed ID: 8342636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia.
    Bohlen HG
    Am J Physiol; 1982 May; 242(5):H785-9. PubMed ID: 7081449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat intestinal lymph osmolarity during glucose and oleic acid absorption.
    Bohlen HG; Unthank JL
    Am J Physiol; 1989 Sep; 257(3 Pt 1):G438-46. PubMed ID: 2782414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of L-arginine-derived nitric oxide in cholinergic dilation of gastric arterioles.
    Chen RY; Ross G; Chyu KY; Guth PH
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H2110-6. PubMed ID: 8285251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the mucosal microcirculation in the upper respiratory tract.
    Smith TL; Prazma J; Coleman CC; Drake AF; Boucher RC
    Otolaryngol Head Neck Surg; 1993 Oct; 109(4):646-52. PubMed ID: 8233499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation.
    Chen RY; Guth PH
    Am J Physiol; 1995 May; 268(5 Pt 1):G791-6. PubMed ID: 7762663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium channels are required during in vivo sodium chloride hyperosmolarity to stimulate increase in intestinal endothelial nitric oxide production.
    Zani BG; Bohlen HG
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H89-95. PubMed ID: 15331363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of a lymphatic system in glucose absorption and the accompanying microvascular hyperemia.
    Steenbergen JM; Lash JM; Bohlen HG
    Am J Physiol; 1994 Oct; 267(4 Pt 1):G529-35. PubMed ID: 7943318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
    Ward ME
    J Appl Physiol (1985); 1999 May; 86(5):1644-50. PubMed ID: 10233130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation.
    Hoffend J; Cavarape A; Endlich K; Steinhausen M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal absorption of sodium and nitric oxide-dependent vasodilation interact to dominate resting vascular resistance.
    Bohlen HG; Lash JM
    Circ Res; 1996 Feb; 78(2):231-7. PubMed ID: 8575066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-induced intestinal hyperemia is mediated by nitric oxide.
    Matheson PJ; Wilson MA; Spain DA; Harris PD; Anderson GL; Garrison RN
    J Surg Res; 1997 Oct; 72(2):146-54. PubMed ID: 9356236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of EDRFs in the control of arteriolar diameter during increased metabolism of striated muscle.
    Saito Y; Eraslan A; Hester RL
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H195-200. PubMed ID: 8048585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindlimb unweighting alters endothelium-dependent vasodilation and ecNOS expression in soleus arterioles.
    Schrage WG; Woodman CR; Laughlin MH
    J Appl Physiol (1985); 2000 Oct; 89(4):1483-90. PubMed ID: 11007586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypertonic saline resuscitation improves intestinal microcirculation in a rat model of hemorrhagic shock.
    Zakaria el R; Tsakadze NL; Garrison RN
    Surgery; 2006 Oct; 140(4):579-87; discussion 587-8. PubMed ID: 17011905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of vascular arginase in hypertension decreases nitric oxide-mediated dilation of coronary arterioles.
    Zhang C; Hein TW; Wang W; Miller MW; Fossum TW; McDonald MM; Humphrey JD; Kuo L
    Hypertension; 2004 Dec; 44(6):935-43. PubMed ID: 15492130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.