These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 834308)

  • 21. Biological systems of the host cell involved in Agrobacterium infection.
    Citovsky V; Kozlovsky SV; Lacroix B; Zaltsman A; Dafny-Yelin M; Vyas S; Tovkach A; Tzfira T
    Cell Microbiol; 2007 Jan; 9(1):9-20. PubMed ID: 17222189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The presence of Agrobacterium tumefaciens plasmid DNA in crown gall tumour cells.
    Matthysse AG; Stump AJ
    J Gen Microbiol; 1976 Jul; 95(1):9-16. PubMed ID: 956781
    [No Abstract]   [Full Text] [Related]  

  • 23. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid.
    Dessaux Y; Petit A; Tempé J; Demarez M; Legrain C; Wiame JM
    J Bacteriol; 1986 Apr; 166(1):44-50. PubMed ID: 3957872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains.
    Baron C; Domke N; Beinhofer M; Hapfelmeier S
    J Bacteriol; 2001 Dec; 183(23):6852-61. PubMed ID: 11698374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions.
    Perl A; Lotan O; Abu-Abied M; Holland D
    Nat Biotechnol; 1996 May; 14(5):624-8. PubMed ID: 9630955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation of infectivity in Rhizobium japonicum.
    Marecková H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(6):594-6. PubMed ID: 4994104
    [No Abstract]   [Full Text] [Related]  

  • 27. Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host.
    Schell J; Van Montagu M; De Beuckeleer M; De Block M; Depicker A; De Wilde M; Engler G; Genetello C; Hernalsteens JP; Holsters M; Seurinck J; Silva B; Van Vliet F; Villarroel R
    Proc R Soc Lond B Biol Sci; 1979 Apr; 204(1155):251-66. PubMed ID: 36626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The spreading of Agrobacterium strains in soft-agar (author's transl)].
    Beiderbeck R; Hohl R
    Zentralbl Bakteriol Naturwiss; 1979; 134(5):423-8. PubMed ID: 543348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation in Rhizobium trifolii. IV. Correlation between streptomycin resistance and infectiveness in Rhizobium trifolii.
    Zelazna-Kowalska I; Lorkiewicz Z
    Acta Microbiol Pol A; 1971; 3(1):11-20. PubMed ID: 5129175
    [No Abstract]   [Full Text] [Related]  

  • 30. [Proceedings: Plasmids in Rhizobium japonicum].
    Luyindula N
    Arch Int Physiol Biochim; 1975 Feb; 83(1):199-200. PubMed ID: 50812
    [No Abstract]   [Full Text] [Related]  

  • 31. Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in beta-D(1-2) glucan synthesis.
    Zorreguieta A; Ugalde RA
    J Bacteriol; 1986 Sep; 167(3):947-51. PubMed ID: 3745125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.
    Hood EE; Helmer GL; Fraley RT; Chilton MD
    J Bacteriol; 1986 Dec; 168(3):1291-301. PubMed ID: 3782037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmid deoxyribonucleic acid in Rhizobium vigna and Rhizobium trifolii.
    Tshitenge G; Luyindula N; Lurquin PF; Ledoux L
    Biochim Biophys Acta; 1975 Dec; 414(3):357-61. PubMed ID: 1203260
    [No Abstract]   [Full Text] [Related]  

  • 34. The genus Agrobacterium and plant tumorigenesis.
    Lippincott JA; Lippincott BB
    Annu Rev Microbiol; 1975; 29():377-405. PubMed ID: 1180518
    [No Abstract]   [Full Text] [Related]  

  • 35. Overexpression of virD1 and virD2 genes in Agrobacterium tumefaciens enhances T-complex formation and plant transformation.
    Wang K; Herrera-Estrella A; Van Montagu M
    J Bacteriol; 1990 Aug; 172(8):4432-40. PubMed ID: 2165478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.
    Close TJ; Rogowsky PM; Kado CI; Winans SC; Yanofsky MF; Nester EW
    J Bacteriol; 1987 Nov; 169(11):5113-8. PubMed ID: 3667525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the isolation of TI-plasmid from Agrobacterium tumefaciens.
    Ledeboer AM; Krol AJ; Dons JJ; Spier F; Schilperoort RA; Zaenen I; van Larebeke N; Schell J
    Nucleic Acids Res; 1976 Feb; 3(2):449-63. PubMed ID: 1257056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finding a way to the nucleus.
    Gelvin SB
    Curr Opin Microbiol; 2010 Feb; 13(1):53-8. PubMed ID: 20022799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of the Agrobacterium tumefaciens chvB virulence region in Azospirillum spp.
    Altabe S; Iñón de Iannino N; de Mendoza D; Ugalde RA
    J Bacteriol; 1990 May; 172(5):2563-7. PubMed ID: 2332404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.