These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 8344234)

  • 1. Assessment of central, peripheral, and autonomic nervous system functions in vibrating tool operators: neuroelectrophysiological studies.
    Araki S; Murata K; Yokoyama K
    Environ Res; 1993 Aug; 62(2):272-82. PubMed ID: 8344234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic and peripheral nervous system dysfunction in workers exposed to hand-arm vibration: a study of R-R interval variability and distribution of nerve conduction velocities.
    Murata K; Araki S; Maeda K
    Int Arch Occup Environ Health; 1991; 63(3):205-11. PubMed ID: 1655654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of occupational use of vibrating tools in the autonomic, central and peripheral nervous system.
    Murata K; Araki S; Okajima F; Nakao M; Suwa K; Matsunaga C
    Int Arch Occup Environ Health; 1997; 70(2):94-100. PubMed ID: 9253637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of central, peripheral, and autonomic nervous system functions in lead workers: neuroelectrophysiological studies.
    Murata K; Araki S; Yokoyama K; Uchida E; Fujimura Y
    Environ Res; 1993 May; 61(2):323-36. PubMed ID: 8495674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and peripheral nervous system effects of hand-arm vibrating tool operation. A study of brainstem auditory-evoked potential and peripheral nerve conduction.
    Murata K; Araki S; Aono H
    Int Arch Occup Environ Health; 1990; 62(3):183-7. PubMed ID: 2347638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of central and peripheral nerve functions in chain-saw operators: a study of short-latency somatosensory evoked potential and peripheral nerve conduction.
    Murata K; Araki S; Aono H
    Tohoku J Exp Med; 1987 Jan; 151(1):25-31. PubMed ID: 3033842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are faster or slower large myelinated nerve fibers more sensitive to chronic lead exposure? A study of the distribution of conduction velocities.
    Sata F; Araki S; Murata K; Fujimura Y; Uchida E
    Environ Res; 1993 Aug; 62(2):333-8. PubMed ID: 8344240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in autonomic function as determined by ECG R-R interval variability in sandal, shoe and leather workers exposed to n-hexane, xylene and toluene.
    Murata K; Araki S; Yokoyama K; Yamashita K; Okajima F; Nakaaki K
    Neurotoxicology; 1994; 15(4):867-75. PubMed ID: 7715857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of neurophysiological methods in occupational medicine in relation to psychological performance.
    Araki S; Murata K; Yokoyama K
    Ann Acad Med Singap; 1994 Sep; 23(5):710-8. PubMed ID: 7847752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the distribution of nerve conduction velocities in alcoholics.
    Fujimura Y; Araki S; Murata K; Yokoyama K; Handa S
    Environ Res; 1993 May; 61(2):317-22. PubMed ID: 8495673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effects of occupational and environmental factors on all faster and slower large myelinated nerve fibers: a study of the distribution of nerve conduction velocities.
    Araki S; Yokoyama K; Murata K
    Environ Res; 1993 Aug; 62(2):325-32. PubMed ID: 8344239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies of peripheral nerve conduction velocities in vibrating tool operators].
    Hisanaga H
    Sangyo Igaku; 1982 May; 24(3):284-93. PubMed ID: 6292556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Involvement of central nervous system in patients with diabetes mellitus detected by evoked potentials].
    Kondo J; Tachibana H; Inuzumi K; Miyauchi M; Matsuoka A; Takeda M; Sugita M
    Rinsho Byori; 1990 Apr; 38(4):457-62. PubMed ID: 2366389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sensory nerve conduction velocity of the distal part of the radial nerve among patients with vibration syndrome.
    Hirata M; Sakakibara H; Abe M
    Electromyogr Clin Neurophysiol; 2002 Mar; 42(2):113-8. PubMed ID: 11938593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory evoked potentials in infants with Down syndrome.
    Chen YJ; Fang PC
    Acta Paediatr; 2005 Nov; 94(11):1615-8. PubMed ID: 16303699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the distribution of nerve conduction velocities in chain saw operators.
    Araki S; Yokoyama K; Aono H; Murata K
    Br J Ind Med; 1988 May; 45(5):341-4. PubMed ID: 3378015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of nerve conduction velocity, somatosensory-evoked potential and late responses (H-reflex and F-wave) of posterior tibial nerve in leprosy.
    Gupta BK; Kochar DK
    Int J Lepr Other Mycobact Dis; 1994 Dec; 62(4):586-93. PubMed ID: 7868958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the peripheral, central, and autonomic nervous system function in styrene workers.
    Murata K; Araki S; Yokoyama K
    Am J Ind Med; 1991; 20(6):775-84. PubMed ID: 1666820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of essential hypertension on short latency human somatosensory-evoked potentials.
    Edwards L; Ring C; McIntyre D; Martin U; Winer JB
    Psychophysiology; 2010 Mar; 47(2):323-31. PubMed ID: 20030757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of central neuropathy in type II diabetes mellitus by multimodal evoked potentials.
    Dolu H; Ulas UH; Bolu E; Ozkardes A; Odabasi Z; Ozata M; Vural O
    Acta Neurol Belg; 2003 Dec; 103(4):206-11. PubMed ID: 15008505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.