BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 8344234)

  • 1. Assessment of central, peripheral, and autonomic nervous system functions in vibrating tool operators: neuroelectrophysiological studies.
    Araki S; Murata K; Yokoyama K
    Environ Res; 1993 Aug; 62(2):272-82. PubMed ID: 8344234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic and peripheral nervous system dysfunction in workers exposed to hand-arm vibration: a study of R-R interval variability and distribution of nerve conduction velocities.
    Murata K; Araki S; Maeda K
    Int Arch Occup Environ Health; 1991; 63(3):205-11. PubMed ID: 1655654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of occupational use of vibrating tools in the autonomic, central and peripheral nervous system.
    Murata K; Araki S; Okajima F; Nakao M; Suwa K; Matsunaga C
    Int Arch Occup Environ Health; 1997; 70(2):94-100. PubMed ID: 9253637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of central, peripheral, and autonomic nervous system functions in lead workers: neuroelectrophysiological studies.
    Murata K; Araki S; Yokoyama K; Uchida E; Fujimura Y
    Environ Res; 1993 May; 61(2):323-36. PubMed ID: 8495674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central and peripheral nervous system effects of hand-arm vibrating tool operation. A study of brainstem auditory-evoked potential and peripheral nerve conduction.
    Murata K; Araki S; Aono H
    Int Arch Occup Environ Health; 1990; 62(3):183-7. PubMed ID: 2347638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of central and peripheral nerve functions in chain-saw operators: a study of short-latency somatosensory evoked potential and peripheral nerve conduction.
    Murata K; Araki S; Aono H
    Tohoku J Exp Med; 1987 Jan; 151(1):25-31. PubMed ID: 3033842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are faster or slower large myelinated nerve fibers more sensitive to chronic lead exposure? A study of the distribution of conduction velocities.
    Sata F; Araki S; Murata K; Fujimura Y; Uchida E
    Environ Res; 1993 Aug; 62(2):333-8. PubMed ID: 8344240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in autonomic function as determined by ECG R-R interval variability in sandal, shoe and leather workers exposed to n-hexane, xylene and toluene.
    Murata K; Araki S; Yokoyama K; Yamashita K; Okajima F; Nakaaki K
    Neurotoxicology; 1994; 15(4):867-75. PubMed ID: 7715857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of neurophysiological methods in occupational medicine in relation to psychological performance.
    Araki S; Murata K; Yokoyama K
    Ann Acad Med Singap; 1994 Sep; 23(5):710-8. PubMed ID: 7847752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the distribution of nerve conduction velocities in alcoholics.
    Fujimura Y; Araki S; Murata K; Yokoyama K; Handa S
    Environ Res; 1993 May; 61(2):317-22. PubMed ID: 8495673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effects of occupational and environmental factors on all faster and slower large myelinated nerve fibers: a study of the distribution of nerve conduction velocities.
    Araki S; Yokoyama K; Murata K
    Environ Res; 1993 Aug; 62(2):325-32. PubMed ID: 8344239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies of peripheral nerve conduction velocities in vibrating tool operators].
    Hisanaga H
    Sangyo Igaku; 1982 May; 24(3):284-93. PubMed ID: 6292556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Involvement of central nervous system in patients with diabetes mellitus detected by evoked potentials].
    Kondo J; Tachibana H; Inuzumi K; Miyauchi M; Matsuoka A; Takeda M; Sugita M
    Rinsho Byori; 1990 Apr; 38(4):457-62. PubMed ID: 2366389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sensory nerve conduction velocity of the distal part of the radial nerve among patients with vibration syndrome.
    Hirata M; Sakakibara H; Abe M
    Electromyogr Clin Neurophysiol; 2002 Mar; 42(2):113-8. PubMed ID: 11938593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory evoked potentials in infants with Down syndrome.
    Chen YJ; Fang PC
    Acta Paediatr; 2005 Nov; 94(11):1615-8. PubMed ID: 16303699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the distribution of nerve conduction velocities in chain saw operators.
    Araki S; Yokoyama K; Aono H; Murata K
    Br J Ind Med; 1988 May; 45(5):341-4. PubMed ID: 3378015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of nerve conduction velocity, somatosensory-evoked potential and late responses (H-reflex and F-wave) of posterior tibial nerve in leprosy.
    Gupta BK; Kochar DK
    Int J Lepr Other Mycobact Dis; 1994 Dec; 62(4):586-93. PubMed ID: 7868958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the peripheral, central, and autonomic nervous system function in styrene workers.
    Murata K; Araki S; Yokoyama K
    Am J Ind Med; 1991; 20(6):775-84. PubMed ID: 1666820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of essential hypertension on short latency human somatosensory-evoked potentials.
    Edwards L; Ring C; McIntyre D; Martin U; Winer JB
    Psychophysiology; 2010 Mar; 47(2):323-31. PubMed ID: 20030757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of central neuropathy in type II diabetes mellitus by multimodal evoked potentials.
    Dolu H; Ulas UH; Bolu E; Ozkardes A; Odabasi Z; Ozata M; Vural O
    Acta Neurol Belg; 2003 Dec; 103(4):206-11. PubMed ID: 15008505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.