These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8344269)
1. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. Achsel T; Gross HJ EMBO J; 1993 Aug; 12(8):3333-8. PubMed ID: 8344269 [TBL] [Abstract][Full Text] [Related]
2. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. Wu XQ; Gross HJ Nucleic Acids Res; 1993 Dec; 21(24):5589-94. PubMed ID: 8284203 [TBL] [Abstract][Full Text] [Related]
3. The discriminator bases G73 in human tRNA(Ser) and A73 in tRNA(Leu) have significantly different roles in the recognition of aminoacyl-tRNA synthetases. Breitschopf K; Gross HJ Nucleic Acids Res; 1996 Feb; 24(3):405-10. PubMed ID: 8602350 [TBL] [Abstract][Full Text] [Related]
4. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Breitschopf K; Achsel T; Busch K; Gross HJ Nucleic Acids Res; 1995 Sep; 23(18):3633-7. PubMed ID: 7478989 [TBL] [Abstract][Full Text] [Related]
5. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Ohama T; Yang DC; Hatfield DL Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071 [TBL] [Abstract][Full Text] [Related]
6. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure. Heckl M; Busch K; Gross HJ FEBS Lett; 1998 May; 427(3):315-9. PubMed ID: 9637248 [TBL] [Abstract][Full Text] [Related]
7. Insights into substrate promiscuity of human seryl-tRNA synthetase. Holman KM; Puppala AK; Lee JW; Lee H; Simonović M RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125 [TBL] [Abstract][Full Text] [Related]
8. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates. Sampson JR; Saks ME Nucleic Acids Res; 1993 Sep; 21(19):4467-75. PubMed ID: 8233780 [TBL] [Abstract][Full Text] [Related]
9. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro. Himeno H; Yoshida S; Soma A; Nishikawa K J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855 [TBL] [Abstract][Full Text] [Related]
11. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Weygand-Durasević I; Nalaskowska M; Söll D J Bacteriol; 1994 Jan; 176(1):232-9. PubMed ID: 8282701 [TBL] [Abstract][Full Text] [Related]
12. The exchange of the discriminator base A73 for G is alone sufficient to convert human tRNA(Leu) into a serine-acceptor in vitro. Breitschopf K; Gross HJ EMBO J; 1994 Jul; 13(13):3166-9. PubMed ID: 8039509 [TBL] [Abstract][Full Text] [Related]
13. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). Amberg R; Mizutani T; Wu XQ; Gross HJ J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909 [TBL] [Abstract][Full Text] [Related]
14. Conversion of aminoacylation specificity from tRNA(Tyr) to tRNA(Ser) in vitro. Himeno H; Hasegawa T; Ueda T; Watanabe K; Shimizu M Nucleic Acids Res; 1990 Dec; 18(23):6815-9. PubMed ID: 2263446 [TBL] [Abstract][Full Text] [Related]
15. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. Vincent C; Borel F; Willison JC; Leberman R; Härtlein M Nucleic Acids Res; 1995 Apr; 23(7):1113-8. PubMed ID: 7537870 [TBL] [Abstract][Full Text] [Related]
16. Discrimination among E. coli tRNAs with a long variable arm. Asahara H; Himeno H; Tamura K; Nameki N; Hasegawa T; Shimizu M Nucleic Acids Symp Ser; 1993; (29):207-8. PubMed ID: 7504246 [TBL] [Abstract][Full Text] [Related]
17. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522 [TBL] [Abstract][Full Text] [Related]
18. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex. Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008 [TBL] [Abstract][Full Text] [Related]
19. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase. Ueda T; Yotsumoto Y; Ikeda K; Watanabe K Nucleic Acids Res; 1992 May; 20(9):2217-22. PubMed ID: 1375735 [TBL] [Abstract][Full Text] [Related]
20. Seryl-tRNA synthetase from Escherichia coli: implication of its N-terminal domain in aminoacylation activity and specificity. Borel F; Vincent C; Leberman R; Härtlein M Nucleic Acids Res; 1994 Aug; 22(15):2963-9. PubMed ID: 8065908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]