These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8344276)

  • 41. Barnase has subsites that give rise to large rate enhancements.
    Day AG; Parsonage D; Ebel S; Brown T; Fersht AR
    Biochemistry; 1992 Jul; 31(28):6390-5. PubMed ID: 1633151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering.
    Vuilleumier S; Fersht AR
    Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recruitment of substrate-specificity properties from one enzyme into a related one by protein engineering.
    Wells JA; Cunningham BC; Graycar TP; Estell DA
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5167-71. PubMed ID: 3299378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families.
    Ohtani N; Haruki M; Morikawa M; Crouch RJ; Itaya M; Kanaya S
    Biochemistry; 1999 Jan; 38(2):605-18. PubMed ID: 9888800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour.
    Mathy N; Hébert A; Mervelet P; Bénard L; Dorléans A; Li de la Sierra-Gallay I; Noirot P; Putzer H; Condon C
    Mol Microbiol; 2010 Jan; 75(2):489-98. PubMed ID: 20025672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-protein interaction: a genetic selection for compensating mutations at the barnase-barstar interface.
    Jucovic M; Hartley RW
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2343-7. PubMed ID: 8637875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Specificity of intracellular ribonucleases Pc1 and Pc2 of the fungus Penicillium claviforme].
    Ivanova GS; Iangol' LM
    Biokhimiia; 1979 Mar; 44(3):400-6. PubMed ID: 465588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effect of Bacillus intermedius RNAases with various catalytic activity on multiplication of Escherichia coli and Bacillus subtilis].
    Kipenskaia LV; Kupriianova-Ashina FG; Il'inskaia ON; Kolpakov AI; Leshchinskaia IB
    Mikrobiologiia; 1998; 67(2):165-9. PubMed ID: 9662695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.
    Numata T; Suzuki A; Yao M; Tanaka I; Kimura M
    Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An L-RNA Aptamer that Binds and Inhibits RNase.
    Olea C; Weidmann J; Dawson PE; Joyce GF
    Chem Biol; 2015 Nov; 22(11):1437-1441. PubMed ID: 26590636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase.
    Axe DD; Foster NW; Fersht AR
    J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering.
    Schreiber G; Fersht AR
    Biochemistry; 1993 May; 32(19):5145-50. PubMed ID: 8494892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of active site residues in barnase on activity and stability.
    Meiering EM; Serrano L; Fersht AR
    J Mol Biol; 1992 Jun; 225(3):585-9. PubMed ID: 1602471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Biosynthesis of extracellular guanyl-specific ribonuclease from Bacillus circulans].
    Znamenskaia LV; Morozova OV; Vershinina VI; Krasnov SI; Shul'ga AA; Leshchinskaia IB
    Mikrobiologiia; 1998; 67(5):619-25. PubMed ID: 9891294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNase-like domain in DNA-directed RNA polymerase II.
    Shirai T; Go M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9056-60. PubMed ID: 1924368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray structural analysis of compensating mutations at the barnase-barstar interface.
    Martin C; Hartley R; Mauguen Y
    FEBS Lett; 1999 Jun; 452(3):128-32. PubMed ID: 10386576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complementation of peptides of barnase, extracellular ribonuclease of Bacillus amyloliquefaciens.
    Hartley RW
    J Biol Chem; 1977 May; 252(10):3252-4. PubMed ID: 863882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study of binase and barnase: experience in chimeric ribonucleases.
    Schulga A; Kurbanov F; Kirpichnikov M; Protasevich I; Lobachov V; Ranjbar B; Chekhov V; Polyakov K; Engelborghs Y; Makarov A
    Protein Eng; 1998 Sep; 11(9):775-82. PubMed ID: 9796826
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specific protein-nucleic acid recognition in ribonuclease T1-2'-guanylic acid complex: an X-ray study.
    Heinemann U; Saenger W
    Nature; 1982 Sep; 299(5878):27-31. PubMed ID: 6287278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel fluorogenic substrate for ribonucleases. Synthesis and enzymatic characterization.
    Zelenko O; Neumann U; Brill W; Pieles U; Moser HE; Hofsteenge J
    Nucleic Acids Res; 1994 Jul; 22(14):2731-9. PubMed ID: 8052528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.