BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8344439)

  • 1. The relationships between transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase of the pyruvate dehydrogenase complex.
    Robinson BH; Chun K
    FEBS Lett; 1993 Aug; 328(1-2):99-102. PubMed ID: 8344439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
    Hohmann S; Meacock PA
    Biochim Biophys Acta; 1998 Jun; 1385(2):201-19. PubMed ID: 9655908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells.
    Tylicki A; Czerniecki J; Dobrzyn P; Matanowska A; Olechno A; Strumilo S
    Can J Microbiol; 2005 Oct; 51(10):833-9. PubMed ID: 16333342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate decarboxylase is like acetolactate synthase (ILV2) and not like the pyruvate dehydrogenase E1 subunit.
    Green JB
    FEBS Lett; 1989 Mar; 246(1-2):1-5. PubMed ID: 2651151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic mechanism of transketolase. Thiamin pyrophosphate-derived transition states for transketolase and pyruvate dehydrogenase are not identical.
    Shreve DS; Holloway MP; Haggerty JC; Sable HZ
    J Biol Chem; 1983 Oct; 258(20):12405-8. PubMed ID: 6355086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiamin pyrophosphate binding mechanism and the function of the aminopyrimidine part.
    Schellenberger A
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():392-6. PubMed ID: 1297772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common structural motif in thiamin pyrophosphate-binding enzymes.
    Hawkins CF; Borges A; Perham RN
    FEBS Lett; 1989 Sep; 255(1):77-82. PubMed ID: 2792374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase.
    Muller YA; Lindqvist Y; Furey W; Schulz GE; Jordan F; Schneider G
    Structure; 1993 Oct; 1(2):95-103. PubMed ID: 8069629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA sequence of the yeast transketolase gene.
    Fletcher TS; Kwee IL; Nakada T; Largman C; Martin BM
    Biochemistry; 1992 Feb; 31(6):1892-6. PubMed ID: 1737042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of thiamin diphosphate in enzymes.
    Hübner G; Tittmann K; Killenberg-Jabs M; Schäffner J; Spinka M; Neef H; Kern D; Kern G; Schneider G; Wikner C; Ghisla S
    Biochim Biophys Acta; 1998 Jun; 1385(2):221-8. PubMed ID: 9655909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex.
    Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F
    Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amino group and steric factors in thiamin catalysis.
    Schellenberger A
    Ann N Y Acad Sci; 1982; 378():51-62. PubMed ID: 6952788
    [No Abstract]   [Full Text] [Related]  

  • 14. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase.
    Guo F; Zhang D; Kahyaoglu A; Farid RS; Jordan F
    Biochemistry; 1998 Sep; 37(38):13379-91. PubMed ID: 9748345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase.
    Ciszak EM; Korotchkina LG; Dominiak PM; Sidhu S; Patel MS
    J Biol Chem; 2003 Jun; 278(23):21240-6. PubMed ID: 12651851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mesomeric Effect of Thiazolium on non-Kekulé Diradicals in Pichia stipitis Transketolase.
    Hsu NS; Wang YL; Lin KH; Chang CF; Lyu SY; Hsu LJ; Liu YC; Chang CY; Wu CJ; Li TL
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1802-1807. PubMed ID: 29243887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the tryptophan residue in the thiamin pyrophosphate binding site of mammalian pyruvate dehydrogenase.
    Ali MS; Shenoy BC; Eswaran D; Andersson LA; Roche TE; Patel MS
    J Biol Chem; 1995 Mar; 270(9):4570-4. PubMed ID: 7876227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids.
    Marsden SR; McMillan DGG; Hanefeld U
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 A resolution.
    Arjunan P; Umland T; Dyda F; Swaminathan S; Furey W; Sax M; Farrenkopf B; Gao Y; Zhang D; Jordan F
    J Mol Biol; 1996 Mar; 256(3):590-600. PubMed ID: 8604141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution.
    Lindqvist Y; Schneider G; Ermler U; Sundström M
    EMBO J; 1992 Jul; 11(7):2373-9. PubMed ID: 1628611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.