BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8344450)

  • 1. In vitro non-enzymatic glycosylation of myofibrillar proteins.
    Syrovy I; Hodny Z
    Int J Biochem; 1993 Jun; 25(6):941-6. PubMed ID: 8344450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycation of myofibrillar proteins and ATPase activity after incubation with eleven sugars.
    Syrový I
    Physiol Res; 1994; 43(1):61-4. PubMed ID: 8054340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paratropomyosin, a new myofibrillar protein, weakens rigor linkages formed between actin and myosin.
    Takahashi K; Yamanoue M; Murakami T; Nishimura T; Yoshikawa R
    J Biochem; 1987 Nov; 102(5):1187-92. PubMed ID: 2963809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation within actin filament in vertebrate skeletal muscle.
    Bremel RD; Weber A
    Nat New Biol; 1972 Jul; 238(82):97-101. PubMed ID: 4261616
    [No Abstract]   [Full Text] [Related]  

  • 5. Tropomyosins as discriminators of myosin function.
    Ostap EM
    Adv Exp Med Biol; 2008; 644():273-82. PubMed ID: 19209828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate-filament proteins.
    Crisona NJ; Strohman RC
    J Cell Biol; 1983 Mar; 96(3):684-92. PubMed ID: 6833377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the actin-activated adenosinetriphosphatase activity of myosin by tropomyosin from vascular and gizzard smooth muscles.
    Yamaguchi M; Ver A; Carlos A; Seidel JC
    Biochemistry; 1984 Feb; 23(4):774-9. PubMed ID: 6231950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of myofibrillar proteins in the normal and hypertrophic heart.
    Zak R
    Basic Res Cardiol; 1977; 72(2-3):235-40. PubMed ID: 140669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonuniform rates of turnover of myofibrillar proteins in rat diaphragm.
    Low RB; Goldberg AL
    J Cell Biol; 1973 Feb; 56(2):590-5. PubMed ID: 4682905
    [No Abstract]   [Full Text] [Related]  

  • 10. Amino acid incorporation rates into myofibrillar proteins of dystrophic chicken skeletal muscle.
    Kohama K
    J Biochem; 1981 Aug; 90(2):497-501. PubMed ID: 7298598
    [No Abstract]   [Full Text] [Related]  

  • 11. Two calcium regulation systems in squid (Ommastrephes sloani pacificus) muscle. Preparation of calcium-sensitive myosin and troponin-tropomyosin.
    Konno K
    J Biochem; 1978 Dec; 84(6):1431-40. PubMed ID: 153902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possible relevance of autoxidative glycosylation in glucose mediated alterations of proteins: an in vitro study on myofibrillar proteins.
    Lal S; Chithra P; Chandrakasan G
    Mol Cell Biochem; 1996 Jan; 154(2):95-100. PubMed ID: 8717422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The incorporation of radioactive lysine or tyrosine into cardiac and skeletal myofibrillar and non-myofibrillar contractile proteins.
    Aumont MC; Bercovici J; Berson G; Leger J; Preteseille M; Swynghedauw B
    Biomedicine; 1980 Oct; 32(3):139-43. PubMed ID: 6778519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of rat cardiac myofibrils and myofibrillar proteins by a myosin-cleaving protease.
    Murakami U; Uchida K
    J Biochem; 1979 Aug; 86(2):553-62. PubMed ID: 479142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibilities of various myofibrillar proteins to cathepsin B and morphological alteration of isolated myofibrils by this enzyme.
    Noda T; Isogai K; Hayashi H; Katunuma N
    J Biochem; 1981 Aug; 90(2):371-9. PubMed ID: 7298595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational dynamics of actin-bound intermediates of the myosin adenosine triphosphatase cycle in myofibrils.
    Berger CL; Thomas DD
    Biophys J; 1994 Jul; 67(1):250-61. PubMed ID: 7918993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle.
    Borovikov YS; Avrova SV; Rysev NA; Sirenko VV; Simonyan AO; Chernev AA; Karpicheva OE; Piers A; Redwood CS
    Arch Biochem Biophys; 2015 Jul; 577-578():11-23. PubMed ID: 25978979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of carbohydrate-protein interactions with specific reference to myosin and ageing.
    Ramamurthy B; Höök P; Larsson L
    Acta Physiol Scand; 1999 Dec; 167(4):327-9. PubMed ID: 10632635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of myofibrillar proteins in skeletal muscles of septic mice.
    Moarbes V; Mayaki D; Huck L; Leblanc P; Vassilakopoulos T; Petrof BJ; Hussain SNA
    Physiol Rep; 2019 Oct; 7(20):e14248. PubMed ID: 31660704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.