These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8344468)

  • 1. Tracing the incorporation of the sperm tail in the mouse zygote and early embryo using an anti-testicular alpha-tubulin antibody.
    Simerly CR; Hecht NB; Goldberg E; Schatten G
    Dev Biol; 1993 Aug; 158(2):536-48. PubMed ID: 8344468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization.
    Sutovsky P; Navara CS; Schatten G
    Biol Reprod; 1996 Dec; 55(6):1195-205. PubMed ID: 8949874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excision and disassembly of sperm tail microtubules during sea urchin fertilization: requirements for microtubule dynamics.
    Fechter J; Schöneberg A; Schatten G
    Cell Motil Cytoskeleton; 1996; 35(4):281-8. PubMed ID: 8956000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfilament stabilization by jasplakinolide arrests oocyte maturation, cortical granule exocytosis, sperm incorporation cone resorption, and cell-cycle progression, but not DNA replication, during fertilization in mice.
    Terada Y; Simerly C; Schatten G
    Mol Reprod Dev; 2000 May; 56(1):89-98. PubMed ID: 10737971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice.
    Schatten G; Schatten H; Spector I; Cline C; Paweletz N; Simerly C; Petzelt C
    Exp Cell Res; 1986 Sep; 166(1):191-208. PubMed ID: 3743654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical features of fractionated spermatid manchettes and sperm axonemes of the azh/azh mutant mouse.
    Mochida K; Tres LL; Kierszenbaum AL
    Mol Reprod Dev; 1999 Apr; 52(4):434-44. PubMed ID: 10092124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule distribution during fertilization in the rabbit.
    Yllera-Fernández MM; Crozet N; Ahmed-Ali M
    Mol Reprod Dev; 1992 Jul; 32(3):271-6. PubMed ID: 1353970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of tubulin and microtubules of in vivo fertilized rabbit oocytes.
    Stambaugh RL; Nicosia SV
    J Androl; 1984; 5(4):259-64. PubMed ID: 6381445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fertilization cone formation in starfish oocytes: the role of the egg cortex actin microfilaments in sperm incorporation.
    Kyozuka K; Osanai K
    Gamete Res; 1988 Jul; 20(3):275-85. PubMed ID: 3235041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin-mediated surface motility during sea urchin fertilization.
    Cline CA; Schatten H; Balczon R; Schatten G
    Cell Motil; 1983; 3(5-6):513-24. PubMed ID: 6686492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochalasin B does not block sperm penetration into denuded starfish oocytes.
    Kyozuka K; Osanai K
    Zygote; 1994 May; 2(2):103-9. PubMed ID: 7874452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis.
    Sawada T; Schatten G
    Dev Biol; 1989 Apr; 132(2):331-42. PubMed ID: 2466714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enucleation of demecolcine-treated bovine oocytes in cytochalasin-free medium: mechanism investigation and practical improvement.
    Meng Q; Wu X; Bunch TD; White K; Sessions BR; Davies CJ; Rickords L; Li GP
    Cell Reprogram; 2011 Oct; 13(5):411-8. PubMed ID: 21740270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the cytoskeleton in sperm entry during fertilization in the freshwater bivalve Dreissena polymorpha.
    Misamore MJ; Lynn JW
    Biol Bull; 2000 Oct; 199(2):144-56. PubMed ID: 11081713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complex dynamic network of microtubule and microfilament cytasters of the leech zygote.
    Cantillana V; Urrutia M; Ubilla A; Fernández J
    Dev Biol; 2000 Dec; 228(1):136-49. PubMed ID: 11087633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gynogenetic activation of porcine oocytes.
    Lee K; Wang C; Spate L; Murphy CN; Prather RS; Machaty Z
    Cell Reprogram; 2014 Apr; 16(2):121-9. PubMed ID: 24661186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Recent contributions to the establishment of the axes of the mammalian embryo].
    Catala M
    Morphologie; 2002 Jun; 86(273):5-8. PubMed ID: 12224392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of sperm tail components after incorporation into the hamster egg.
    Hiraoka J; Hirao Y
    Gamete Res; 1988 Apr; 19(4):369-80. PubMed ID: 3198057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.