These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8344531)

  • 1. Characterization of allelic replacement in Streptococcus parasanguis: transformation and homologous recombination in a 'nontransformable' streptococcus.
    Fenno JC; Shaikh A; Fives-Taylor P
    Gene; 1993 Aug; 130(1):81-90. PubMed ID: 8344531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of a Streptococcus parasanguis recA mutant: homologous recombination is not required for adhesion in an in vitro tooth surface model.
    Froeliger EH; Tomich M; Fives-Taylor P
    J Bacteriol; 1999 Jan; 181(1):63-7. PubMed ID: 9864313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-vector system for integration of recombinant DNA into chromosomes of transformable and nontransformable streptococci.
    Pozzi G; Musmanno RA; Renzoni EA; Oggioni MR; Cusi MG
    J Bacteriol; 1988 Apr; 170(4):1969-72. PubMed ID: 2832394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid transformation of Streptococcus sanguis (Challis) occurs by circular and linear molecules.
    Behnke D
    Mol Gen Genet; 1981; 182(3):490-7. PubMed ID: 6946273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helper plasmid cloning in Streptococcus sanguis: cloning of a tetracycline resistance determinant from the Streptococcus mutans chromosome.
    Tobian JA; Macrina FL
    J Bacteriol; 1982 Oct; 152(1):215-22. PubMed ID: 6288658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of electroporation to construct isogenic mutants of Haemophilus ducreyi.
    Hansen EJ; Latimer JL; Thomas SE; Helminen M; Albritton WL; Radolf JD
    J Bacteriol; 1992 Aug; 174(16):5442-9. PubMed ID: 1644771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of Streptococcus sanguis Challis with Streptococcus lactis plasmid DNA.
    Harlander SK; McKay LL
    Appl Environ Microbiol; 1984 Aug; 48(2):342-6. PubMed ID: 6435522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene replacement through homologous recombination in Mycobacterium intracellulare.
    Marklund BI; Speert DP; Stokes RW
    J Bacteriol; 1995 Nov; 177(21):6100-5. PubMed ID: 7592373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of naturally competent Streptococcus mutans with replicative and non-replicative Tn916-containing plasmids: implications for a mechanism of transposition.
    Caufield PW; Shah G
    Dev Biol Stand; 1995; 85():19-25. PubMed ID: 8586174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and genetic characterization of lactose-metabolic genes of Streptococcus cremoris.
    Inamine JM; Lee LN; LeBlanc DJ
    J Bacteriol; 1986 Sep; 167(3):855-62. PubMed ID: 3091581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed genomic integration, gene replacement, and integrative gene expression in Streptococcus thermophilus.
    Mollet B; Knol J; Poolman B; Marciset O; Delley M
    J Bacteriol; 1993 Jul; 175(14):4315-24. PubMed ID: 8331064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of recombinational versus mutational events in damaged plasmid DNA containing regions of homology with the chromosome.
    Dolzani L; Lagatolla C; Monti-Bragadin C
    Mutat Res; 1991 Nov; 264(3):127-34. PubMed ID: 1682804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation of plasmid transfer in Streptococcus pneumoniae by chromosomal homology.
    Lopez P; Espinosa M; Stassi DL; Lacks SA
    J Bacteriol; 1982 May; 150(2):692-701. PubMed ID: 6279568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation and allelic replacement in Francisella spp.
    Anthony LS; Gu MZ; Cowley SC; Leung WW; Nano FE
    J Gen Microbiol; 1991 Dec; 137(12):2697-703. PubMed ID: 1791425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252.
    Vijayakumar MN; Ayalew S
    J Bacteriol; 1993 May; 175(9):2713-9. PubMed ID: 8386725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of interplasmid recombination to generate stable selectable markers for yeast transformation: application to studies of actin gene control.
    Hubberstey AV; Wildeman AG
    Genome; 1990 Oct; 33(5):696-706. PubMed ID: 2262141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.
    Balasubramanian V; Pavelka MS; Bardarov SS; Martin J; Weisbrod TR; McAdam RA; Bloom BR; Jacobs WR
    J Bacteriol; 1996 Jan; 178(1):273-9. PubMed ID: 8550428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of Azotobacter vinelandii OP with a broad host range plasmid containing a cloned chromosomal nif-DNA marker.
    Bingle WH
    Plasmid; 1988 May; 19(3):242-50. PubMed ID: 3231689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and use of integration plasmids to generate site-specific mutations in the Actinomyces viscosus T14V chromosome.
    Yeung MK
    Infect Immun; 1995 Aug; 63(8):2924-30. PubMed ID: 7622214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric streptococcal plasmids and their use as molecular cloning vehicles in Streptococcus sanguis (Challis).
    Macrina FL; Jones KR; Wood PH
    J Bacteriol; 1980 Sep; 143(3):1425-35. PubMed ID: 6251030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.