BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8344924)

  • 1. Structure-function relationships in an antifreeze polypeptide. The role of charged amino acids.
    Wen D; Laursen RA
    J Biol Chem; 1993 Aug; 268(22):16396-400. PubMed ID: 8344924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions.
    Chakrabartty A; Ananthanarayanan VS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11307-12. PubMed ID: 2738067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide.
    Chakrabartty A; Hew CL
    Eur J Biochem; 1991 Dec; 202(3):1057-63. PubMed ID: 1765066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.
    Zhang W; Laursen RA
    J Biol Chem; 1998 Dec; 273(52):34806-12. PubMed ID: 9857006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties.
    Zhang W; Laursen RA
    FEBS Lett; 1999 Jul; 455(3):372-6. PubMed ID: 10437807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in an antifreeze polypeptide. The effect of added bulky groups on activity.
    Wen D; Laursen RA
    J Biol Chem; 1993 Aug; 268(22):16401-5. PubMed ID: 8344925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition.
    Harding MM; Ward LG; Haymet AD
    Eur J Biochem; 1999 Sep; 264(3):653-65. PubMed ID: 10491111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis.
    Deng G; Laursen RA
    Biochim Biophys Acta; 1998 Nov; 1388(2):305-14. PubMed ID: 9858755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids.
    Wen D; Laursen RA
    J Biol Chem; 1992 Jul; 267(20):14102-8. PubMed ID: 1629210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze.
    Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL
    Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of an antifreeze polypeptide from ocean pout, Macrozoarces americanus: role of glutamic acid residues in protein stability and antifreeze activity by site-directed mutagenesis.
    Li XM; Hew CL
    Protein Eng; 1991 Dec; 4(8):1003-8. PubMed ID: 1687790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for binding of an antifreeze polypeptide to ice.
    Wen D; Laursen RA
    Biophys J; 1992 Dec; 63(6):1659-62. PubMed ID: 1489916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface.
    Baardsnes J; Jelokhani-Niaraki M; Kondejewski LH; Kuiper MJ; Kay CM; Hodges RS; Davies PL
    Protein Sci; 2001 Dec; 10(12):2566-76. PubMed ID: 11714925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A D-antifreeze polypeptide displays the same activity as its natural L-enantiomer.
    Wen D; Laursen RA
    FEBS Lett; 1993 Feb; 317(1-2):31-4. PubMed ID: 8428630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides.
    Wierzbicki A; Knight CA; Rutland TJ; Muccio DD; Pybus BS; Sikes CS
    Biomacromolecules; 2000; 1(2):268-74. PubMed ID: 11710110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A diminished role for hydrogen bonds in antifreeze protein binding to ice.
    Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
    Chakrabartty A; Yang DS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11313-6. PubMed ID: 2738068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis.
    Deng G; Andrews DW; Laursen RA
    FEBS Lett; 1997 Jan; 402(1):17-20. PubMed ID: 9013849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice.
    Jorgensen H; Mori M; Matsui H; Kanaoka M; Yanagi H; Yabusaki Y; Kikuzono Y
    Protein Eng; 1993 Jan; 6(1):19-27. PubMed ID: 8433967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.