These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 8345523)
21. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. Moretti L; Pentikäinen OT; Settimo L; Johnson MS J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371 [TBL] [Abstract][Full Text] [Related]
22. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. Shilton BH; Flocco MM; Nilsson M; Mowbray SL J Mol Biol; 1996 Nov; 264(2):350-63. PubMed ID: 8951381 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Milburn MV; Privé GG; Milligan DL; Scott WG; Yeh J; Jancarik J; Koshland DE; Kim SH Science; 1991 Nov; 254(5036):1342-7. PubMed ID: 1660187 [TBL] [Abstract][Full Text] [Related]
24. Ligand binding induces an asymmetrical transmembrane signal through a receptor dimer. Yang Y; Park H; Inouye M J Mol Biol; 1993 Jul; 232(2):493-8. PubMed ID: 8393938 [TBL] [Abstract][Full Text] [Related]
25. The crystal structure of glutamine-binding protein from Escherichia coli. Hsiao CD; Sun YJ; Rose J; Wang BC J Mol Biol; 1996 Sep; 262(2):225-42. PubMed ID: 8831790 [TBL] [Abstract][Full Text] [Related]
27. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128 [TBL] [Abstract][Full Text] [Related]
28. Studies of the erythrocyte spectrin tetramerization region. Park S; Mehboob S; Luo BH; Hurtuk M; Johnson ME; Fung LW Cell Mol Biol Lett; 2001; 6(3):571-85. PubMed ID: 11598635 [TBL] [Abstract][Full Text] [Related]
29. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli. Mise T Biochemistry; 2016 Jul; 55(26):3708-13. PubMed ID: 27292793 [TBL] [Abstract][Full Text] [Related]
30. Conformational changes in the cytoplasmic domain of the Escherichia coli aspartate receptor upon adaptive methylation. Le Moual H; Quang T; Koshland DE Biochemistry; 1998 Oct; 37(42):14852-9. PubMed ID: 9778360 [TBL] [Abstract][Full Text] [Related]
31. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. Meier M; Bider MD; Malashkevich VN; Spiess M; Burkhard P J Mol Biol; 2000 Jul; 300(4):857-65. PubMed ID: 10891274 [TBL] [Abstract][Full Text] [Related]
32. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor. Trammell MA; Falke JJ Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914 [TBL] [Abstract][Full Text] [Related]
33. Structural organization and assembly of flagellar hook protein from Salmonella typhimurium. Vonderviszt F; Závodszky P; Ishimura M; Uedaira H; Namba K J Mol Biol; 1995 Aug; 251(4):520-32. PubMed ID: 7658470 [TBL] [Abstract][Full Text] [Related]
34. Transmembrane signalling and the aspartate receptor. Scott WG; Stoddard BL Structure; 1994 Sep; 2(9):877-87. PubMed ID: 7812719 [TBL] [Abstract][Full Text] [Related]
35. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Vyas NK; Vyas MN; Quiocho FA Nature; 1987 Jun 18-24; 327(6123):635-8. PubMed ID: 3600760 [TBL] [Abstract][Full Text] [Related]
36. Structure of the Escherichia coli response regulator NarL. Baikalov I; Schröder I; Kaczor-Grzeskowiak M; Grzeskowiak K; Gunsalus RP; Dickerson RE Biochemistry; 1996 Aug; 35(34):11053-61. PubMed ID: 8780507 [TBL] [Abstract][Full Text] [Related]
37. Crystallization and preliminary X-ray diffraction study of the ligand-binding domain of the bacterial chemotaxis-mediating aspartate receptor of Salmonella typhimurium. Jancarik J; Scott WG; Milligan DL; Koshland DE; Kim SH J Mol Biol; 1991 Sep; 221(1):31-4. PubMed ID: 1656050 [TBL] [Abstract][Full Text] [Related]
38. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching. Coleman MD; Bass RB; Mehan RS; Falke JJ Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983 [TBL] [Abstract][Full Text] [Related]
39. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies. Winston SE; Mehan R; Falke JJ Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380 [TBL] [Abstract][Full Text] [Related]
40. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies. Bass RB; Coleman MD; Falke JJ Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]