BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8345524)

  • 1. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method.
    Loewenthal R; Sancho J; Reinikainen T; Fersht AR
    J Mol Biol; 1993 Jul; 232(2):574-83. PubMed ID: 8345524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability.
    Loewenthal R; Sancho J; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):759-70. PubMed ID: 1569555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering.
    Russell AJ; Thomas PG; Fersht AR
    J Mol Biol; 1987 Feb; 193(4):803-13. PubMed ID: 3302273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN'.
    Jackson SE; Fersht AR
    Biochemistry; 1993 Dec; 32(50):13909-16. PubMed ID: 8268166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-consistent field approach to protein structure and stability. I: pH dependence of electrostatic contribution.
    Dimitrov RA; Crichton RR
    Proteins; 1997 Apr; 27(4):576-96. PubMed ID: 9141137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase).
    Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y
    Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent interactions contribute to the raised pKa of His18 in Barnase.
    Prévost M
    J Mol Biol; 1996 Jul; 260(1):99-110. PubMed ID: 8676396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds.
    Oliveberg M; Arcus VL; Fersht AR
    Biochemistry; 1995 Jul; 34(29):9424-33. PubMed ID: 7626612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nucleotide substrate binding on the pKa of catalytic residues in barnase.
    Gordon-Beresford RM; Van Belle D; Giraldo J; Wodak SJ
    Proteins; 1996 Jun; 25(2):180-94. PubMed ID: 8811734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain.
    Sali D; Bycroft M; Fersht AR
    Nature; 1988 Oct; 335(6192):740-3. PubMed ID: 3173493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histidine residues at the N- and C-termini of alpha-helices: perturbed pKas and protein stability.
    Sancho J; Serrano L; Fersht AR
    Biochemistry; 1992 Mar; 31(8):2253-8. PubMed ID: 1540580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface electrostatic interactions contribute little of stability of barnase.
    Sali D; Bycroft M; Fersht AR
    J Mol Biol; 1991 Aug; 220(3):779-88. PubMed ID: 1870131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation.
    Frisch C; Schreiber G; Johnson CM; Fersht AR
    J Mol Biol; 1997 Apr; 267(3):696-706. PubMed ID: 9126847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence.
    Loewenthal R; Sancho J; Fersht AR
    Biochemistry; 1991 Jul; 30(27):6775-9. PubMed ID: 2065058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function.
    Pérez-Cañadillas JM; Campos-Olivas R; Lacadena J; Martínez del Pozo A; Gavilanes JG; Santoro J; Rico M; Bruix M
    Biochemistry; 1998 Nov; 37(45):15865-76. PubMed ID: 9843392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Glu73 of barnase in catalysis and the binding of barstar.
    Schreiber G; Frisch C; Fersht AR
    J Mol Biol; 1997 Jul; 270(1):111-22. PubMed ID: 9231905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of electrostatic effects of engineering of protein charges.
    Sternberg MJ; Hayes FR; Russell AJ; Thomas PG; Fersht AR
    Nature; 1987 Nov 5-11; 330(6143):86-8. PubMed ID: 3313059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental assignment of the structure of the transition state for the association of barnase and barstar.
    Frisch C; Fersht AR; Schreiber G
    J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the ionization state of the active-site histidine in a subtilisin-(chloromethane inhibitor) derivative by 13C-NMR.
    O'Connell TP; Malthouse JP
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):35-40. PubMed ID: 8694783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the pH dependence of protein stability.
    Yang AS; Honig B
    J Mol Biol; 1993 May; 231(2):459-74. PubMed ID: 8510157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.