These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8345778)

  • 1. Mechanisms that contribute to the in vitro relaxation and signal intensity of water in barium sulfate suspensions used as MRI contrast agents.
    Briggs RW; Liebig T; Ballinger JR; Ros PR
    Magn Reson Imaging; 1993; 11(5):635-44. PubMed ID: 8345778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High density barium sulfate suspension for MRI: optimization of concentration for bowel opacification.
    Ballinger JR; Ros PR
    Magn Reson Imaging; 1992; 10(4):637-40. PubMed ID: 1501534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximate analytical expressions for the Carr-Purcell-Meiboom-Gill sequences: Decay rates and modulation zeros of the echo train and the relation between the T
    Kandrashkin YE
    J Magn Reson; 2023 Jul; 352():107464. PubMed ID: 37148712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse relaxation rate enhancement caused by magnetic particulates.
    Hardy PA; Henkelman RM
    Magn Reson Imaging; 1989; 7(3):265-75. PubMed ID: 2548049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low density barium and bentonite mixture versus high density barium: a comparative study to optimize negative gastrointestinal contrast agents for MRI.
    Paley MR; Nicolas AI; Mergo PJ; Torres GM; Burton SS; Ros PR
    Magn Reson Imaging; 1997; 15(9):1033-6. PubMed ID: 9364949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barium sulfate suspension as a negative oral MRI contrast agent: in vitro and human optimization studies.
    Li KC; Tart RP; Fitzsimmons JR; Storm BL; Mao J; Rolfes RJ
    Magn Reson Imaging; 1991; 9(2):141-50. PubMed ID: 2034046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation of radiographically detectable gastrointestinal contrast agents for magnetic resonance imaging: effects of a barium sulfate additive on MR contrast agent effectiveness.
    Rubin DL; Muller HH; Young SW
    Magn Reson Med; 1992 Jan; 23(1):154-65. PubMed ID: 1734177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BaSO4-loaded agarose: a construction material for multimodality imaging phantoms.
    Litt HI; Brody AS
    Acad Radiol; 2001 May; 8(5):377-83. PubMed ID: 11345267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biexponential parameterization of diffusion and T2 relaxation decay curves in a rat muscle edema model: decay curve components and water compartments.
    Ababneh Z; Beloeil H; Berde CB; Gambarota G; Maier SE; Mulkern RV
    Magn Reson Med; 2005 Sep; 54(3):524-31. PubMed ID: 16086363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified signal intensity equation of Carr-Purcell-Meiboom-Gill pulse sequence for MR imaging.
    Yamada S; Matsuzawa T; Yamada K; Yoshioka S; Ono S; Hishinuma T
    Tohoku J Exp Med; 1989 Jul; 158(3):203-9. PubMed ID: 2799806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transverse signal decay under the weak field approximation: Theory and validation.
    Berman AJL; Pike GB
    Magn Reson Med; 2018 Jul; 80(1):341-350. PubMed ID: 29194739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined proton T1N and CPMG T2N studies of water saturated sandstone core plugs.
    Jerosch-Herold M; Thomann H; Thompson AH
    Magn Reson Imaging; 1994; 12(2):369-73. PubMed ID: 8170341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the spin-spin relaxation time of water in collagen gels on collagen fiber directions.
    Takeuchi M; Sekino M; Iriguchi N; Ueno S
    Magn Reson Med Sci; 2004; 3(4):153-7. PubMed ID: 16093633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation of a T2rho transverse relaxation model using LASER and CPMG acquisitions.
    Nikolova S; Bowen CV; Bartha R
    J Magn Reson; 2006 Jul; 181(1):35-44. PubMed ID: 16616533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential changes in MR water proton relaxation time detect the process of rat brain myelination during maturation.
    Matsumae M; Kurita D; Atsumi H; Haida M; Sato O; Tsugane R
    Mech Ageing Dev; 2001 Sep; 122(12):1281-91. PubMed ID: 11438119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR properties of human median nerve at 3 T: proton density, T1, T2, and magnetization transfer.
    Gambarota G; Mekle R; Mlynárik V; Krueger G
    J Magn Reson Imaging; 2009 Apr; 29(4):982-6. PubMed ID: 19306447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative analysis by online nuclear magnetic resonance using Carr-Purcell-Meiboom-Gill sequence with low refocusing flip angles.
    de Andrade FD; Netto AM; Colnago LA
    Talanta; 2011 Mar; 84(1):84-8. PubMed ID: 21315902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal loss induced by superparamagnetic iron oxide particles in NMR spin-echo images: the role of diffusion.
    Rozneman Y; Zou XM; Kantor HL
    Magn Reson Med; 1990 Apr; 14(1):31-9. PubMed ID: 2352471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.
    Tønning E; Polders D; Callaghan PT; Engelsen SB
    J Magn Reson; 2007 Sep; 188(1):10-23. PubMed ID: 17596979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the differences between the BaSO4 particles and additives in media for the double contrast examination of the stomach.
    Virkkunen P; Lounatmaa K
    Rofo; 1980 Nov; 133(5):542-5. PubMed ID: 6456201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.