These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8346189)

  • 1. Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg(2+)-F(-)-Pi complex at 2.6 A resolution.
    Lebioda L; Zhang E; Lewinski K; Brewer JM
    Proteins; 1993 Jul; 16(3):219-25. PubMed ID: 8346189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression, purification and the 1.8 angstroms resolution crystal structure of human neuron specific enolase.
    Chai G; Brewer JM; Lovelace LL; Aoki T; Minor W; Lebioda L
    J Mol Biol; 2004 Aug; 341(4):1015-21. PubMed ID: 15289101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluoride inhibition of enolase: crystal structure and thermodynamics.
    Qin J; Chai G; Brewer JM; Lovelace LL; Lebioda L
    Biochemistry; 2006 Jan; 45(3):793-800. PubMed ID: 16411755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The H159A mutant of yeast enolase 1 has significant activity.
    Brewer JM; Holland MJ; Lebioda L
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1199-202. PubMed ID: 11027610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the enolase magnesium II binding site: implications for its evolution.
    Schreier B; Höcker B
    Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution.
    Zhang E; Brewer JM; Minor W; Carreira LA; Lebioda L
    Biochemistry; 1997 Oct; 36(41):12526-34. PubMed ID: 9376357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution.
    Lebioda L; Stec B; Brewer JM; Tykarska E
    Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refined structure of yeast apo-enolase at 2.25 A resolution.
    Stec B; Lebioda L
    J Mol Biol; 1990 Jan; 211(1):235-48. PubMed ID: 2405163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the Escherichia coli RNA degradosome component enolase.
    Kühnel K; Luisi BF
    J Mol Biol; 2001 Oct; 313(3):583-92. PubMed ID: 11676541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure analysis of Entamoeba histolytica enolase.
    Schulz EC; Tietzel M; Tovy A; Ankri S; Ficner R
    Acta Crystallogr D Biol Crystallogr; 2011 Jul; 67(Pt 7):619-27. PubMed ID: 21697600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of fluoride by yeast enolase.
    Bunick FJ; Kashket S
    Biochemistry; 1982 Aug; 21(18):4285-90. PubMed ID: 6751386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution.
    Zhang E; Hatada M; Brewer JM; Lebioda L
    Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution.
    Lebioda L; Stec B
    Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex.
    Pinkse MW; Merkx M; Averill BA
    Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New routes to polymetallic clusters: fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic properties.
    Jones LF; Rajaraman G; Brockman J; Murugesu M; Sanudo EC; Raftery J; Teat SJ; Wernsdorfer W; Christou G; Brechin EK; Collison D
    Chemistry; 2004 Oct; 10(20):5180-94. PubMed ID: 15372650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution.
    Wedekind JE; Reed GH; Rayment I
    Biochemistry; 1995 Apr; 34(13):4325-30. PubMed ID: 7703246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor.
    Lebioda L; Stec B
    Nature; 1988 Jun; 333(6174):683-6. PubMed ID: 3374614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.