BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1115 related articles for article (PubMed ID: 8346190)

  • 1. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?
    Wang W; Wang J; Kollman PA
    Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study.
    Li Q; Gusarov S; Evoy S; Kovalenko A
    J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex.
    Klumb LA; Chu V; Stayton PS
    Biochemistry; 1998 May; 37(21):7657-63. PubMed ID: 9601024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the relative binding free energy of 2'GMP and 2'AMP to ribonuclease T1 using molecular dynamics/free energy perturbation approaches.
    Hirono S; Kollman PA
    J Mol Biol; 1990 Mar; 212(1):197-209. PubMed ID: 2157020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A free energy calculation study of the effect of H-->F substitution on binding affinity in ligand-antibody interactions.
    Saito M; Okazaki I; Oda M; Fujii I
    J Comput Chem; 2005 Feb; 26(3):272-82. PubMed ID: 15614800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody.
    Nordman N; Valjakka J; Peräkylä M
    Proteins; 2003 Jan; 50(1):135-43. PubMed ID: 12471606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.
    Laitinen T; Kankare JA; Peräkylä M
    Proteins; 2004 Apr; 55(1):34-43. PubMed ID: 14997538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO
    J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins.
    Wade RC; Mazor MH; McCammon JA; Quiocho FA
    Biopolymers; 1991 Jul; 31(8):919-31. PubMed ID: 1782354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed binding free energy study of 2:1 ligand-DNA complex formation by experiment and simulation.
    Treesuwan W; Wittayanarakul K; Anthony NG; Huchet G; Alniss H; Hannongbua S; Khalaf AI; Suckling CJ; Parkinson JA; Mackay SP
    Phys Chem Chem Phys; 2009 Dec; 11(45):10682-93. PubMed ID: 20145812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction pathways and free energy barriers for alkaline hydrolysis of insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds: electrostatic and steric effects.
    Xiong Y; Zhan CG
    J Org Chem; 2004 Nov; 69(24):8451-8. PubMed ID: 15549820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding.
    Tong Y; Mei Y; Li YL; Ji CG; Zhang JZ
    J Am Chem Soc; 2010 Apr; 132(14):5137-42. PubMed ID: 20302307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods.
    Gouda H; Kuntz ID; Case DA; Kollman PA
    Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex.
    Freitag S; Le Trong I; Chilkoti A; Klumb LA; Stayton PS; Stenkamp RE
    J Mol Biol; 1998 May; 279(1):211-21. PubMed ID: 9636711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z; Lazaridis T
    J Phys Chem B; 2005 Jan; 109(1):662-70. PubMed ID: 16851059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of relative binding affinities of fructose 1,6-bisphosphatase mutants with adenosine monophosphate using free energy perturbation method.
    Mutyala R; Reddy RN; Sumakanth M; Reddanna P; Reddy MR
    J Comput Chem; 2007 Apr; 28(5):932-7. PubMed ID: 17253638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.