These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8346294)

  • 1. Evidence for a separate food-entrainable circadian oscillator in the pigeon.
    Phillips DL; Rautenberg W; Rashotte ME; Stephan FK
    Physiol Behav; 1993 Jun; 53(6):1105-13. PubMed ID: 8346294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption.
    Rashotte ME; Basco PS; Henderson RP
    Physiol Behav; 1995 Apr; 57(4):731-46. PubMed ID: 7777611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between light- and food-entrainable circadian oscillators in pigeons.
    Rashotte ME; Stephan FK
    Physiol Behav; 1996; 59(4-5):1005-10. PubMed ID: 8778836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic responses of pigeons during food deprivation and restricted feeding.
    Phillips DL; Rashotte ME; Henderson RP
    Physiol Behav; 1991 Jul; 50(1):195-203. PubMed ID: 1946717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoperiod duration and energy balance in the pigeon.
    Basco PS; Rashotte ME; Stephan FK
    Physiol Behav; 1996 Jul; 60(1):151-9. PubMed ID: 8804656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between feeding- and light-entrainable circadian pacemakers in the rat.
    Stephan FK
    Physiol Behav; 1986 Oct; 38(4):537-44. PubMed ID: 3823166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction.
    Wiater MF; Li AJ; Dinh TT; Jansen HT; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(8):R949-60. PubMed ID: 23986359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.
    Olivo D; Caba M; Gonzalez-Lima F; Vázquez A; Corona-Morales A
    Brain Res; 2014 Dec; 1592():11-21. PubMed ID: 25281805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats.
    Landry GJ; Kent BA; Patton DF; Jaholkowski M; Marchant EG; Mistlberger RE
    PLoS One; 2011; 6(9):e24187. PubMed ID: 21912674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food- and light-entrainable oscillators control feeding and locomotor activity rhythms, respectively, in the Japanese catfish, Plotosus japonicus.
    Kasai M; Kiyohara S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):901-12. PubMed ID: 20725728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian clocks for all meal-times: anticipation of 2 daily meals in rats.
    Mistlberger RE; Kent BA; Chan S; Patton DF; Weinberg A; Parfyonov M
    PLoS One; 2012; 7(2):e31772. PubMed ID: 22355393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory for feeding time: possible dependence on coupled circadian oscillators.
    Rosenwasser AM; Pelchat RJ; Adler NT
    Physiol Behav; 1984 Jan; 32(1):25-30. PubMed ID: 6718530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of time of feeding on recovery of food-entrained rhythms during subsequent fasting in SCN-lesioned rats.
    Ruis JF; Talamini LM; Buys JP; Rietveld WJ
    Physiol Behav; 1989 Nov; 46(5):857-66. PubMed ID: 2628998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurobiology of food anticipatory circadian rhythms.
    Mistlberger RE
    Physiol Behav; 2011 Sep; 104(4):535-45. PubMed ID: 21527266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple entrained oscillator model of food anticipatory circadian rhythms.
    Petersen CC; Cao F; Stinchcombe AR; Mistlberger RE
    Sci Rep; 2022 Jun; 12(1):9306. PubMed ID: 35661783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily restricted feeding effects on the circadian activity rhythms of the stripe-faced dunnart, Sminthopsis macroura.
    Kennedy GA; Coleman GJ; Armstrong SM
    J Biol Rhythms; 1996 Sep; 11(3):188-95. PubMed ID: 8872591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.