BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 8346496)

  • 1. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise.
    Sridhar MK; Carter R; Moran F; Banham SW
    Thorax; 1993 Jun; 48(6):643-7. PubMed ID: 8346496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing.
    Carter R; Banham SW
    Respir Med; 2000 Apr; 94(4):350-5. PubMed ID: 10845433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide.
    Sun XG; Hansen JE; Ting H; Chuang ML; Stringer WW; Adame D; Wasserman K
    Chest; 2000 Sep; 118(3):631-40. PubMed ID: 10988183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension.
    Nishiyama T; Nakamura S; Yamashita K
    J Anesth; 2006; 20(4):331-4. PubMed ID: 17072703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in arterial and transcutaneous oxygen and carbon dioxide tensions during and after voluntary hyperventilation.
    Steurer J; Hoffmann U; Dür P; Russi E; Vetter W
    Respiration; 1997; 64(3):200-5. PubMed ID: 9154671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from exercise to rest. Ventilatory and arterial blood gas responses.
    O'Neill AV; Johnson DC
    Chest; 1991 May; 99(5):1145-50. PubMed ID: 1902160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women.
    Gläser S; Ittermann T; Koch B; Schäper C; Felix SB; Völzke H; Könemann R; Ewert R; Hansen JE
    Respir Med; 2013 Jun; 107(6):919-26. PubMed ID: 23510666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure.
    Rosner V; Hannhart B; Chabot F; Polu JM
    Eur Respir J; 1999 May; 13(5):1044-7. PubMed ID: 10414402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a transcutaneous blood gas monitoring system in critically ill dogs.
    Holowaychuk MK; Fujita H; Bersenas AM
    J Vet Emerg Crit Care (San Antonio); 2014; 24(5):545-53. PubMed ID: 25186166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous carbon dioxide threshold during exercise.
    Abraham P; Carter D; Bickert S; Desvaux B; Saumet JL
    J Sports Med Phys Fitness; 1999 Jun; 39(2):93-100. PubMed ID: 10399415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation study of a transcutaneous carbon dioxide monitor in patients in the emergency department.
    McVicar J; Eager R
    Emerg Med J; 2009 May; 26(5):344-6. PubMed ID: 19386868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.
    Jakubowicz JF; Bai S; Matlock DN; Jones ML; Hu Z; Proffitt B; Courtney SE
    Respir Care; 2018 Jul; 63(7):900-906. PubMed ID: 29717098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.
    Chakravarthy M; Narayan S; Govindarajan R; Jawali V; Rajeev S
    J Cardiothorac Vasc Anesth; 2010 Jun; 24(3):451-5. PubMed ID: 19729321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a fast transcutaneous CO2 detector to evaluate escape hoods: the "CAPS 2000" with the inlet valves removed from the nose-cup as a test case.
    Arieli R; Arieli Y; Eynan M; Abramovich A
    Mil Med; 2012 Nov; 177(11):1426-30. PubMed ID: 23198526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is transcutaneous PO2 monitoring during exercise a reliable alternative to arterial PO2 measurements?
    Brudin L; Berg S; Ekberg P; Castenfors J
    Clin Physiol; 1994 Jan; 14(1):47-52. PubMed ID: 8149709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of transcutaneous carbon dioxide tension measurements during cardiopulmonary exercise testing.
    Stege G; van den Elshout FJ; Heijdra YF; van de Ven MJ; Dekhuijzen PN; Vos PJ
    Respiration; 2009; 78(2):147-53. PubMed ID: 19088464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial blood gases during exercise: validity of transcutaneous measurements.
    Planès C; Leroy M; Foray E; Raffestin B
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1686-91. PubMed ID: 11733883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of disturbances in pulmonary gas exchanges during exercise from arterialized earlobe PO2.
    Aguilaniu B; Maitre J; Diab S; Perrault H; Péronnet F
    Respir Physiol Neurobiol; 2011 Jun; 177(1):30-5. PubMed ID: 21397053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Invasive or transcutaneous measurements of oxygen saturation and blood gases? An evaluation of pulse oximetry and transcutaneous measurement of PO2 and PCO2 during rest and exercise].
    Stanghelle JK; Christensen CC; Haanaes OC
    Tidsskr Nor Laegeforen; 1993 Mar; 113(8):967-70. PubMed ID: 8470079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of arterial blood gases by transcutaneous O2 and CO2 in critically ill hyperdynamic trauma patients.
    Stokes CD; Blevins S; Siegel JH; Stoklosa JC; Cotter K; Goh KC; Goodarzi S; Belzberg H; Chiarla C
    J Trauma; 1987 Nov; 27(11):1240-60. PubMed ID: 3682036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.