These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8346910)

  • 1. Application of quantitative structure-activity relationship modeling to the evaluation of the changes in enzymatic activity of carboxypeptidase Y upon chemical modifications.
    Kanstrup A; Breddam K; Buchardt O
    Arch Biochem Biophys; 1993 Aug; 304(2):332-7. PubMed ID: 8346910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The specificity of carboxypeptidase Y may be altered by changing the hydrophobicity of the S'1 binding pocket.
    Sørensen SB; Breddam K
    Protein Sci; 1997 Oct; 6(10):2227-32. PubMed ID: 9336845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modifications of a cysteinyl residue introduced in the binding site of carboxypeptidase Y by site-directed mutagenesis.
    Bech LM; Breddam K
    Carlsberg Res Commun; 1988; 53(6):381-93. PubMed ID: 3255314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of carboxypeptidase from Watermelon.
    Matoba T; Doi E
    J Biochem; 1975 Jun; 77(6):1297-303. PubMed ID: 5403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling.
    Bernstein NJ; Pratt RF
    Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate.
    Mortensen UH; Remington SJ; Breddam K
    Biochemistry; 1994 Jan; 33(2):508-17. PubMed ID: 7904479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of yeast carboxypeptidase C1 with group-specific reagents.
    Kuhn RW; Walsh KA; Neurath H
    Biochemistry; 1976 Nov; 15(22):4881-5. PubMed ID: 10962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxypeptidase A mechanisms.
    Lipscomb WN
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):3875-8. PubMed ID: 6933442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the hydrolytic properties of (serine) carboxypeptidase Y.
    Stennicke HR; Mortensen UH; Breddam K
    Biochemistry; 1996 Jun; 35(22):7131-41. PubMed ID: 8679540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the interaction of esters and peptides with carboxypeptidase B.
    Zisapel N; Sokolovsky M
    Eur J Biochem; 1975 Jun; 54(2):541-7. PubMed ID: 240688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of the applicability of carboxypeptidase Y in peptide synthesis by protein engineering.
    Raaschou-Nielsen M; Mortensen UH; Olesen K; Breddam K
    Pept Res; 1994; 7(3):132-5. PubMed ID: 8081068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic and conformational changes induced by limited subtilisin cleavage of bovine carboxypeptidase A.
    Solomon BM; Larsen KS; Riordan JF
    Biochemistry; 1990 Aug; 29(31):7303-9. PubMed ID: 1698455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates.
    Hayashi R; Bai Y; Hata T
    J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of the metal site of cadmium-substituted carboxypeptidase A in solution and crystalline states and under steady-state peptide hydrolysis.
    Bauer R; Danielsen E; Hemmingsen L; Sorensen MV; Ulstrup J; Friis EP; Auld DS; Bjerrum MJ
    Biochemistry; 1997 Sep; 36(38):11514-24. PubMed ID: 9298972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates with charged P1 residues are efficiently hydrolyzed by serine carboxypeptidases when S3-P1 interactions are facilitated.
    Olesen K; Breddam K
    Biochemistry; 1997 Oct; 36(40):12235-41. PubMed ID: 9315861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.
    Lin G; Shieh CT; Ho HC; Chouhwang JY; Lin WY; Lu CP
    Biochemistry; 1999 Aug; 38(31):9971-81. PubMed ID: 10433704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site residues of procarboxypeptidase Y are accessible to chemical modification.
    Sørensen SO; Winther JR
    Biochim Biophys Acta; 1994 Apr; 1205(2):289-93. PubMed ID: 8155711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Theoretical conformational analysis of a substrate component of tetrahedral intermediates and of acyl-enzyme of carboxypeptidase A].
    Paslen VV; Lipkind GM
    Mol Biol (Mosk); 1981; 15(2):408-23. PubMed ID: 7242537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal incorporation of fluorogenic and affinity labels using wild-type and mutagenized carboxypeptidase Y.
    Stennicke HR; Olesen K; Sørensen SB; Breddam K
    Anal Biochem; 1997 May; 248(1):141-8. PubMed ID: 9177733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sinapoyltransferases in the light of molecular evolution.
    Stehle F; Brandt W; Stubbs MT; Milkowski C; Strack D
    Phytochemistry; 2009; 70(15-16):1652-62. PubMed ID: 19695650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.