These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 8347127)
1. An unexpected pathway for the metabolic degradation of 1,3-dialkyl-3-acyltriazenes. Rouzer CA; Thompson EJ; Skinner TL; Heavner PA; Bartolini WP; Mitchell K; Kurz E; Smith RH; Michejda CJ Biochem Pharmacol; 1993 Jul; 46(1):165-73. PubMed ID: 8347127 [TBL] [Abstract][Full Text] [Related]
2. Oxidative metabolism of 1-(2-chloroethyl)-3-alkyl-3- (methylcarbamoyl)triazenes: formation of chloroacetaldehyde and relevance to biological activity. Rouzer CA; Sabourin M; Skinner TL; Thompson EJ; Wood TO; Chmurny GN; Klose JR; Roman JM; Smith RH; Michejda CJ Chem Res Toxicol; 1996; 9(1):172-8. PubMed ID: 8924588 [TBL] [Abstract][Full Text] [Related]
3. Specificity of DNA alkylation by 1-(2-chloroethyl)-3-alkyl-3-acyltriazenes depends on the structure of the acyl group: kinetic and product studies. Smith MB; Schmidt BF; Czerwinski G; Taneyhill LA; Snyder EJ; Kline AM; Michejda CJ; Smith RH Chem Res Toxicol; 1996 Mar; 9(2):466-75. PubMed ID: 8839051 [TBL] [Abstract][Full Text] [Related]
4. Alkylation of DNA by 1,3-dialkyl-3-acyltriazenes: correlation of biological activity with chemical behavior. Kroeger-Koepke MB; Michejda CJ; Smith RH Chem Res Toxicol; 1992; 5(4):541-7. PubMed ID: 1391620 [TBL] [Abstract][Full Text] [Related]
6. 1,3-Dialkyl-3-acyltriazenes, a novel class of antineoplastic alkylating agents. Smith RH; Scudiero DA; Michejda CJ J Med Chem; 1990 Sep; 33(9):2579-83. PubMed ID: 2391696 [TBL] [Abstract][Full Text] [Related]
7. Base sequence selectivity in the alkylation of DNA by 1,3-dialkyl-3-acyltriazenes. Kroeger Smith MB; Taneyhill LA; Michejda CJ; Smith RH Chem Res Toxicol; 1996; 9(1):341-8. PubMed ID: 8924614 [TBL] [Abstract][Full Text] [Related]
8. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Hyland R; Gescher A; Thummel K; Schiller C; Jheeta P; Mynett K; Smith AW; Mráz J Mol Pharmacol; 1992 Feb; 41(2):259-66. PubMed ID: 1538706 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
10. Cytochrome P-450-dependent formation of alkylating metabolites of the 2-chloroethylnitrosoureas MeCCNU and CCNU. Kramer RA Biochem Pharmacol; 1989 Oct; 38(19):3185-92. PubMed ID: 2818619 [TBL] [Abstract][Full Text] [Related]
11. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450. Marinello AJ; Bansal SK; Paul B; Koser PL; Love J; Struck RF; Gurtoo HL Cancer Res; 1984 Oct; 44(10):4615-21. PubMed ID: 6380709 [TBL] [Abstract][Full Text] [Related]
12. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes. Dalmadi B; Leibinger J; Szeberényi S; Borbás T; Farkas S; Szombathelyi Z; Tihanyi K Drug Metab Dispos; 2003 May; 31(5):631-6. PubMed ID: 12695352 [TBL] [Abstract][Full Text] [Related]
13. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
14. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
15. Metabolite intermediate complexation of microsomal cytochrome P450 2C11 in male rat liver by nortriptyline. Murray M Mol Pharmacol; 1992 Nov; 42(5):931-8. PubMed ID: 1435757 [TBL] [Abstract][Full Text] [Related]
16. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation. Butler AM; Murray M J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313 [TBL] [Abstract][Full Text] [Related]
17. 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) modulates rat liver microsomal cyclophosphamide and ifosphamide activation by suppressing cytochrome P450 2C11 messenger RNA levels. Chang TK; Chen H; Waxman DJ Drug Metab Dispos; 1994; 22(5):673-9. PubMed ID: 7835216 [TBL] [Abstract][Full Text] [Related]
18. In vitro metabolism of ACNU, 3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-1-(2-chloroethyl)-1-nitroso urea hydrochloride, a water-soluble antitumor nitrosourea. Nishigaki T; Nakamura K; Tanaka M J Pharmacobiodyn; 1985 Jun; 8(6):409-16. PubMed ID: 3863922 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the oxidation of amine metabolites of nitrotoluenes by rat hepatic microsomes. N- and C-hydroxylation. Kedderis GL; Rickert DE Mol Pharmacol; 1985 Aug; 28(2):207-14. PubMed ID: 4022002 [TBL] [Abstract][Full Text] [Related]
20. Microsomal metabolism of triazenylimidazoles. Hill DL Cancer Res; 1975 Nov; 35(11 Pt 1):3106-10. PubMed ID: 241485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]