These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 8347615)

  • 1. Disulfide arrangement and functional domains of beta-1,4-endoglucanse E5 from Thermomonospora fusca.
    McGinnis K; Wilson DB
    Biochemistry; 1993 Aug; 32(32):8157-61. PubMed ID: 8347615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disulfide arrangement and chemical modification of beta-1,4-endoglucanase E2 from Thermomonospora fusca.
    McGinnis K; Wilson DB
    Biochemistry; 1993 Aug; 32(32):8151-6. PubMed ID: 8347614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxin.
    Krieglstein K; Henschen A; Weller U; Habermann E
    Eur J Biochem; 1990 Feb; 188(1):39-45. PubMed ID: 2108021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca.
    Sakon J; Irwin D; Wilson DB; Karplus PA
    Nat Struct Biol; 1997 Oct; 4(10):810-8. PubMed ID: 9334746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the disulfide bridges in factor Va heavy chain.
    Xue J; Kalafatis M; Silveira JR; Kung C; Mann KG
    Biochemistry; 1994 Nov; 33(44):13109-16. PubMed ID: 7947716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enzymatically active truncated form (-55 N-terminal residues) of rabbit gastric lipase. Correlation between the enzymatic activity and disulfide bond oxydo-reduction state.
    De Caro J; Verger R; De Caro A
    Biochim Biophys Acta; 1998 Jul; 1386(1):39-49. PubMed ID: 9675239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional relationships in two families of beta-1,4-glycanases.
    Gilkes NR; Claeyssens M; Aebersold R; Henrissat B; Meinke A; Morrison HD; Kilburn DG; Warren RA; Miller RC
    Eur J Biochem; 1991 Dec; 202(2):367-77. PubMed ID: 1761039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships in the carboxylic-ester-hydrolase superfamily. Disulfide bridge arrangement in porcine intestinal glycerol-ester hydrolase.
    Smialowski-Fléter S; Moulin A; Villard C; Puigserver A
    Eur J Biochem; 2000 Apr; 267(8):2227-34. PubMed ID: 10759845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional characteristics of partially disulfide-reduced intermediates of ovotransferrin N lobe. Cystine localization by indirect end-labeling approach and implications for the reduction pathway.
    Yamashita H; Nakatsuka T; Hirose M
    J Biol Chem; 1995 Dec; 270(50):29806-12. PubMed ID: 8530374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the amino-terminus of the secretin receptor: I. Status of cysteine and cystine residues.
    Asmann YW; Dong M; Ganguli S; Hadac EM; Miller LJ
    Mol Pharmacol; 2000 Nov; 58(5):911-9. PubMed ID: 11040037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete mapping of a cystine knot and nested disulfides of recombinant human arylsulfatase A by multi-enzyme digestion and LC-MS analysis using CID and ETD.
    Ni W; Lin M; Salinas P; Savickas P; Wu SL; Karger BL
    J Am Soc Mass Spectrom; 2013 Jan; 24(1):125-33. PubMed ID: 23208745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A; Cooper L; Creighton TE
    Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo.
    Zapun A; Bardwell JC; Creighton TE
    Biochemistry; 1993 May; 32(19):5083-92. PubMed ID: 8494885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxymethylation of thiol groups in ovalbumin: implications for proteins that contain both thiol and disulfide groups.
    Webster DM; Thompson EO
    Aust J Biol Sci; 1982; 35(2):125-35. PubMed ID: 7126053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete assignment of disulfide bonds in bovine dopamine beta-hydroxylase.
    Robertson JG; Adams GW; Medzihradszky KF; Burlingame AL; Villafranca JJ
    Biochemistry; 1994 Sep; 33(38):11563-75. PubMed ID: 7918370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disulfide bonding interaction role for cysteines in the extracellular domain of the thyrotropin-releasing hormone receptor.
    Cook JV; McGregor A; Lee T; Milligan G; Eidne KA
    Endocrinology; 1996 Jul; 137(7):2851-8. PubMed ID: 8770906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular disulfide loop formation in a peptide containing two cysteines.
    Snyder GH
    Biochemistry; 1987 Feb; 26(3):688-94. PubMed ID: 3567140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of free and disulfide-bonded cysteine residues in testis angiotensin-converting enzyme: functional implications.
    Sturrock ED; Yu XC; Wu Z; Biemann K; Riordan JF
    Biochemistry; 1996 Jul; 35(29):9560-6. PubMed ID: 8755737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.