BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 8347622)

  • 21. Pressure induces interdigitation differently in DPPC and DPPG.
    Singh H; Emberley J; Morrow MR
    Eur Biophys J; 2008 Jul; 37(6):783-92. PubMed ID: 18247024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pulmonary surfactant model systems catch the specific interaction of an amphiphilic peptide with anionic phospholipid.
    Nakahara H; Lee S; Shibata O
    Biophys J; 2009 Feb; 96(4):1415-29. PubMed ID: 19217859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1158-66. PubMed ID: 8038387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study.
    Shiffer K; Hawgood S; Haagsman HP; Benson B; Clements JA; Goerke J
    Biochemistry; 1993 Jan; 32(2):590-7. PubMed ID: 8422370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes.
    Plasencia I; Baumgart F; Andreu D; Marsh D; Pérez-Gil J
    Biochim Biophys Acta; 2008 May; 1778(5):1274-82. PubMed ID: 18339301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman spectroscopic studies of the packing properties of mixed dihexadecyl- and dipalmitoylphosphatidylcholine bilayer dispersions.
    Devlin MT; Levin IW
    Biochemistry; 1989 Oct; 28(22):8912-20. PubMed ID: 2605232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the use of deuterated phospholipids for infrared spectroscopic studies of monomolecular films: a thermodynamic analysis of single and binary component phospholipid monolayers.
    Baldyga DD; Dluhy RA
    Chem Phys Lipids; 1998 Nov; 96(1-2):81-97. PubMed ID: 9871984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnesium-induced lipid bilayer microdomain reorganizations: implications for membrane fusion.
    Schultz ZD; Pazos IM; McNeil-Watson FK; Lewis EN; Levin IW
    J Phys Chem B; 2009 Jul; 113(29):9932-41. PubMed ID: 19603842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids.
    Taneva S; Keough KM
    Biophys J; 1994 Apr; 66(4):1137-48. PubMed ID: 8038385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural characterization of the monolayer-multilayer transition in a pulmonary surfactant model: IR studies of films transferred at continuously varying surface pressures.
    Mao G; Desai J; Flach CR; Mendelsohn R
    Langmuir; 2008 Mar; 24(5):2025-34. PubMed ID: 18198907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rotational dynamics of spin-labelled surfactant-associated proteins SP-B and SP-C in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers.
    Cruz A; Marsh D; Pérez-Gil J
    Biochim Biophys Acta; 1998 Dec; 1415(1):125-34. PubMed ID: 9858708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific mode of interaction between components of model pulmonary surfactants using computer simulations.
    Kaznessis YN; Kim S; Larson RG
    J Mol Biol; 2002 Sep; 322(3):569-82. PubMed ID: 12225750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films.
    Cruz A; Vázquez L; Vélez M; Pérez-Gil J
    Biophys J; 2004 Jan; 86(1 Pt 1):308-20. PubMed ID: 14695272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopic study of an interdigitated lipid bilayer. Dipalmitoylphosphatidylcholine dispersed in glycerol.
    O'Leary TJ; Levin IW
    Biochim Biophys Acta; 1984 Oct; 776(2):185-9. PubMed ID: 6548154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
    Sáenz A; Cañadas O; Bagatolli LA; Johnson ME; Casals C
    FEBS J; 2006 Jun; 273(11):2515-27. PubMed ID: 16704424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of antimycobacterial and anti-pneumocystis drugs with phospholipid membranes.
    Pedroso de Lima MC; Chiche BH; Debs RJ; Düzgüneş N
    Chem Phys Lipids; 1990 Mar; 53(4):361-71. PubMed ID: 2160335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers.
    Cruz A; Casals C; Keough KM; Pérez-Gil J
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):133-8. PubMed ID: 9355744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids.
    Cai P; Flach CR; Mendelsohn R
    Biochemistry; 2003 Aug; 42(31):9446-52. PubMed ID: 12899632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.