These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8347726)

  • 1. Identification and simulation of new non-random statistical properties common to different eukaryotic gene subpopulations.
    Arquès DG; Michel CJ
    Biochimie; 1993; 75(5):399-407. PubMed ID: 8347726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and simulation of new non-random statistical properties common to different populations of eukaryotic non-coding genes.
    Arquès DG; Michel CJ; Orieux K
    J Theor Biol; 1993 Apr; 161(3):329-42. PubMed ID: 8331957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical expression of the purine/pyrimidine autocorrelation function after and before random mutations.
    Arques DG; Michel CJ
    Math Biosci; 1994 Sep; 123(1):103-25. PubMed ID: 7949744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and simulation of shifted periodicities common to protein coding genes of eukaryotes, prokaryotes and viruses.
    Arquès DG; Lapayre JC; Michel CJ
    J Theor Biol; 1995 Feb; 172(3):279-91. PubMed ID: 7715198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simulation of the genetic periodicities modulo 2 and 3 with processes of nucleotide insertions and deletions.
    Arquès DG; Michel CJ
    J Theor Biol; 1992 May; 156(1):113-27. PubMed ID: 1379311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of DNA sequence evolution.
    Arquès DG; Michel CJ
    Bull Math Biol; 1990; 52(6):741-72. PubMed ID: 2279193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A purine-pyrimidine motif verifying an identical presence in almost all gene taxonomic groups.
    Arquès DG; Michel CJ
    J Theor Biol; 1987 Oct; 128(4):457-61. PubMed ID: 3446957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical expression of the purine/pyrimidine codon probability after and before random mutations.
    Arquès DG; Michel CJ
    Bull Math Biol; 1993 Nov; 55(6):1025-38. PubMed ID: 8281128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the purine/pyrimidine codon occurrence with a reduced centered variable and an evaluation compared to the frequency statistic.
    Michel CJ
    Math Biosci; 1989 Dec; 97(2):161-77. PubMed ID: 2520209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical solutions of the dinucleotide probability after and before random mutations.
    Arquès DG; Michel CJ
    J Theor Biol; 1995 Aug; 175(4):533-44. PubMed ID: 7475089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A complementary circular code in the protein coding genes.
    Arquès DG; Michel CJ
    J Theor Biol; 1996 Sep; 182(1):45-58. PubMed ID: 8917736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications.
    Senapathy P
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2133-7. PubMed ID: 3457379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana.
    Handa H
    Nucleic Acids Res; 2003 Oct; 31(20):5907-16. PubMed ID: 14530439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evolutionary analytical model of a complementary circular code simulating the protein coding genes, the 5' and 3' regions.
    Arquès DG; Fallot JP; Michel CJ
    Bull Math Biol; 1998 Jan; 60(1):163-94. PubMed ID: 9530018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-splicing introns in tRNA genes of widely divergent bacteria.
    Reinhold-Hurek B; Shub DA
    Nature; 1992 May; 357(6374):173-6. PubMed ID: 1579169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodicities in coding and noncoding regions of the genes.
    Arquès DG; Michel CJ
    J Theor Biol; 1990 Apr; 143(3):307-18. PubMed ID: 2385108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes.
    Michel CJ
    Comput Biol Chem; 2012 Apr; 37():24-37. PubMed ID: 22129773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of nucleotide runs in coding and noncoding DNA sequences.
    Sprizhitsky YuA ; Nechipurenko YuD ; Alexandrov AA; Volkenstein MV
    J Biomol Struct Dyn; 1988 Oct; 6(2):345-58. PubMed ID: 3271526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intron-exon structures of eukaryotic model organisms.
    Deutsch M; Long M
    Nucleic Acids Res; 1999 Aug; 27(15):3219-28. PubMed ID: 10454621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origination of the split structure of spliceosomal genes from random genetic sequences.
    Regulapati R; Bhasi A; Singh CK; Senapathy P
    PLoS One; 2008; 3(10):e3456. PubMed ID: 18941625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.