These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8347957)

  • 1. Frequency dependence of MR relaxation times. I. Paramagnetic ions.
    Vymazal J; Bulte JW; Frank JA; Di Chiro G; Brooks RA
    J Magn Reson Imaging; 1993; 3(4):637-40. PubMed ID: 8347957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry.
    Bulte JW; Wu C; Brechbiel MW; Brooks RA; Vymazal J; Holla M; Frank JA
    Invest Radiol; 1998 Nov; 33(11):841-5. PubMed ID: 9818319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes.
    Koenig SH; Baglin C; Brown RD; Brewer CF
    Magn Reson Med; 1984 Dec; 1(4):496-501. PubMed ID: 6443784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Gd- and Dy-chelates for T2 contrast-enhanced imaging.
    Moseley ME; Vexler Z; Asgari HS; Mintorovitch J; Derugin N; Rocklage S; Kucharczyk J
    Magn Reson Med; 1991 Dec; 22(2):259-64; discussion 265-7. PubMed ID: 1812356
    [No Abstract]   [Full Text] [Related]  

  • 5. Combination of gadolinium and dysprosium chelates as a cellular integrity marker in MR imaging.
    Ericsson A; Bach-Gansmo T; Niklasson F; Hemmingsson A
    Acta Radiol; 1995 Jan; 36(1):41-6. PubMed ID: 7833167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of reperfused ischemia of the rat intestine: value of magnetic resonance imaging with small-molecular-weight dysprosium and gadolinium chelates.
    Van Beers BE; Goudemant JF; Oksendal A; Jamart J; Delos M; Thiran JP; Demeure R; Pringot J; Maldague B
    Acad Radiol; 1997 Jan; 4(1):35-42. PubMed ID: 9040868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic principles of MR contrast.
    Nelson KL; Runge VM
    Top Magn Reson Imaging; 1995; 7(3):124-36. PubMed ID: 7654392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation of radiographically detectable gastrointestinal contrast agents for magnetic resonance imaging: effects of a barium sulfate additive on MR contrast agent effectiveness.
    Rubin DL; Muller HH; Young SW
    Magn Reson Med; 1992 Jan; 23(1):154-65. PubMed ID: 1734177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early experience of paramagnetic tracers in ultra low magnetic fields.
    Paajanen H
    Acta Radiol Suppl; 1990; 374():81-3. PubMed ID: 1966974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Work in progress: potential oral and intravenous paramagnetic NMR contrast agents.
    Runge VM; Stewart RG; Clanton JA; Jones MM; Lukehart CM; Partain CL; James AE
    Radiology; 1983 Jun; 147(3):789-91. PubMed ID: 6844614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes.
    Kellar KE; Fossheim SL; Koenig SH
    Invest Radiol; 1998 Nov; 33(11):835-40. PubMed ID: 9818318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging.
    Geraldes CF; Sherry AD; Brown RD; Koenig SH
    Magn Reson Med; 1986 Apr; 3(2):242-50. PubMed ID: 3086656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of reperfused myocardial infarctions with T1-enhancing and magnetic susceptibility-enhancing contrast media.
    Saeed M; Wendland MF; Higgins CB
    Invest Radiol; 1991 Nov; 26 Suppl 1():S239-41; discussion S245-7. PubMed ID: 1808138
    [No Abstract]   [Full Text] [Related]  

  • 14. Proton relaxation enhancement.
    Wood ML; Hardy PA
    J Magn Reson Imaging; 1993; 3(1):149-56. PubMed ID: 8428082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMRD assessment of Gd-DTPA-bis(methoxyethylamide), (Gd-DTPA-BMEA), a nonionic MRI agent.
    Adzamli K; Periasamy MP; Spiller M; Koenig SH
    Invest Radiol; 1999 Jun; 34(6):410-4. PubMed ID: 10353033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI contrast media for the liver. Efficacy in conditions of acute biliary obstruction.
    Leander P; Golman K; Klaveness J; Holtz E; Olsson M; Leunbach I
    Invest Radiol; 1990 Oct; 25(10):1130-4. PubMed ID: 2127772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of brain perfusion using the nonionic contrast agents Dy-DTPA-BMA and Gd-DTPA-BMA.
    Kucharczyk J; Asgari H; Mintorovitch J; Vexler Z; Moseley M; Watson A; Rocklage S
    Invest Radiol; 1991 Nov; 26 Suppl 1():S250-2; discussion S253-4. PubMed ID: 1808141
    [No Abstract]   [Full Text] [Related]  

  • 18. The design of liposomal paramagnetic MR agents: effect of vesicle size upon the relaxivity of surface-incorporated lipophilic chelates.
    Tilcock C; Ahkong QF; Koenig SH; Brown RD; Davis M; Kabalka G
    Magn Reson Med; 1992 Sep; 27(1):44-51. PubMed ID: 1435209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AUR Memorial Award. Identification of myocardial cell death in reperfused myocardial injury using dual mechanisms of contrast-enhanced magnetic resonance imaging.
    Geschwind JF; Wendland MF; Saeed M; Lauerma K; Derugin N; Higgins CB
    Acad Radiol; 1994 Dec; 1(4):319-25. PubMed ID: 9419506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative magnetic resonance imaging of rat brain tumors: in vivo NMR relaxometry for the discrimination of normal and pathological tissues.
    Hoehn-Berlage M; Bockhorst K
    Technol Health Care; 1994 Dec; 2(4):247-54. PubMed ID: 7842309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.