These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8349288)

  • 1. Real-time expert systems interfaces, cognitive processes, and task performance: an empirical assessment.
    Adelman L; Cohen MS; Bresnick TA; Chinnis JO; Laskey KB
    Hum Factors; 1993 Jun; 35(2):243-61. PubMed ID: 8349288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing performance of an Electronic Health Record (EHR) using Cognitive Task Analysis.
    Saitwal H; Feng X; Walji M; Patel V; Zhang J
    Int J Med Inform; 2010 Jul; 79(7):501-6. PubMed ID: 20452274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.
    Hocraffer A; Nam CS
    Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting Human Performance in Remotely Piloted Aircraft.
    Gruenwald CM; Middendorf MS; Hoepf MR; Galster SM
    Aerosp Med Hum Perform; 2018 Feb; 89(2):115-121. PubMed ID: 29463356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance.
    Ahmed A; Chandra S; Herasevich V; Gajic O; Pickering BW
    Crit Care Med; 2011 Jul; 39(7):1626-34. PubMed ID: 21478739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing clinicians' cognitive workload by system redesign; a pre-post think aloud usability study.
    Peute LW; De Keizer NF; Van Der Zwan EP; Jaspers MW
    Stud Health Technol Inform; 2011; 169():925-9. PubMed ID: 21893881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Level of automation effects on performance, situation awareness and workload in a dynamic control task.
    Endsley MR; Kaber DB
    Ergonomics; 1999 Mar; 42(3):462-92. PubMed ID: 10048306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information.
    McGuirl JM; Sarter NB
    Hum Factors; 2006; 48(4):656-65. PubMed ID: 17240714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining Cognitive Workload Using Physiological Measurements: Pupillometry and Heart-Rate Variability.
    Ma X; Monfared R; Grant R; Goh YM
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the effect of human laterality, type of computer and noise on operators' performance of a data entry task.
    Khan ZA; Rizvi SA
    Int J Occup Saf Ergon; 2009; 15(1):53-60. PubMed ID: 19272240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the combined effect of noise and vibration on the performance of a readability task in a mobile driving environment by operators of different ages.
    Khan IA; Mallick Z; Khan ZA; Muzammil M
    Int J Occup Saf Ergon; 2009; 15(3):277-86. PubMed ID: 19744369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing operator capacity estimates for supervisory control of autonomous vehicles.
    Cummings ML; Guerlain S
    Hum Factors; 2007 Feb; 49(1):1-15. PubMed ID: 17315838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target acquisition with UAVs: vigilance displays and advanced cuing interfaces.
    Gunn DV; Warm JS; Nelson WT; Bolia RS; Schumsky DA; Corcoran KJ
    Hum Factors; 2005; 47(3):488-97. PubMed ID: 16435691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.
    Oppold P; Rupp M; Mouloua M; Hancock PA; Martin J
    Work; 2012; 41 Suppl 1():5609-11. PubMed ID: 22317628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agency modulates interactions with automation technologies.
    Le Goff K; Rey A; Haggard P; Oullier O; Berberian B
    Ergonomics; 2018 Sep; 61(9):1282-1297. PubMed ID: 29683404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control.
    Miller CA; Parasuraman R
    Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitating the Work of Unmanned Aerial Vehicle Operators Using Artificial Intelligence: An Intelligent Filter for Command-and-Control Maps to Reduce Cognitive Workload.
    Zak Y; Parmet Y; Oron-Gilad T
    Hum Factors; 2023 Nov; 65(7):1345-1360. PubMed ID: 35392697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of automated decision aids on performance, operator behaviour and workload in a simulated supervisory control task.
    Röttger S; Bali K; Manzey D
    Ergonomics; 2009 May; 52(5):512-23. PubMed ID: 19296323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overload and automation-dependence in a multi-UAS simulation: Task demand and individual difference factors.
    Lin J; Matthews G; Wohleber RW; Funke GJ; Calhoun GL; Ruff HA; Szalma J; Chiu P
    J Exp Psychol Appl; 2020 Jun; 26(2):218-235. PubMed ID: 31621357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.