These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 8349564)

  • 1. Characterization of twenty-six new heat shock genes of Escherichia coli.
    Chuang SE; Blattner FR
    J Bacteriol; 1993 Aug; 175(16):5242-52. PubMed ID: 8349564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator.
    Liberek K; Wall D; Georgopoulos C
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6224-8. PubMed ID: 7603976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli.
    Raina S; Missiakas D; Georgopoulos C
    EMBO J; 1995 Mar; 14(5):1043-55. PubMed ID: 7889935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms.
    Weiner L; Brissette JL; Model P
    Genes Dev; 1991 Oct; 5(10):1912-23. PubMed ID: 1717346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro.
    Laskowska E; Kuczyńska-Wiśnik D; Skórko-Glonek J; Taylor A
    Mol Microbiol; 1996 Nov; 22(3):555-71. PubMed ID: 8939438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins.
    Liberek K; Georgopoulos C
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11019-23. PubMed ID: 8248205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli.
    Gragerov A; Nudler E; Komissarova N; Gaitanaris GA; Gottesman ME; Nikiforov V
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10341-4. PubMed ID: 1359538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32.
    Zhou YN; Kusukawa N; Erickson JW; Gross CA; Yura T
    J Bacteriol; 1988 Aug; 170(8):3640-9. PubMed ID: 2900239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis.
    Michel GP
    J Bacteriol; 1993 May; 175(10):3228-31. PubMed ID: 8491740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, sequencing and expression of the dnaJ gene of Coxiella burnetii.
    Zuber M; Hoover TA; Court DL
    Gene; 1995 Jan; 152(1):99-102. PubMed ID: 7828937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene.
    Narberhaus F; Giebeler K; Bahl H
    J Bacteriol; 1992 May; 174(10):3290-9. PubMed ID: 1577695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock.
    Tsui HC; Feng G; Winkler ME
    J Bacteriol; 1996 Oct; 178(19):5719-31. PubMed ID: 8824618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli.
    Kanemori M; Nishihara K; Yanagi H; Yura T
    J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ClpP component of Clp protease is the sigma 32-dependent heat shock protein F21.5.
    Kroh HE; Simon LD
    J Bacteriol; 1990 Oct; 172(10):6026-34. PubMed ID: 2211522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How a mutation in the gene encoding sigma 70 suppresses the defective heat shock response caused by a mutation in the gene encoding sigma 32.
    Zhou YN; Gross CA
    J Bacteriol; 1992 Nov; 174(22):7128-37. PubMed ID: 1385385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli.
    Tilly K; Erickson J; Sharma S; Georgopoulos C
    J Bacteriol; 1986 Dec; 168(3):1155-8. PubMed ID: 2430947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.