These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 8349590)
1. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. Cantilina T; Sagara Y; Inesi G; Jones LR J Biol Chem; 1993 Aug; 268(23):17018-25. PubMed ID: 8349590 [TBL] [Abstract][Full Text] [Related]
2. Relationship between phospholamban and nucleotide activation of cardiac sarcoplasmic reticulum Ca2+ adenosinetriphosphatase. Coll KE; Johnson RG; McKenna E Biochemistry; 1999 Feb; 38(8):2444-51. PubMed ID: 10029538 [TBL] [Abstract][Full Text] [Related]
3. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum. Movsesian MA; Morris GL; Wang JH; Krall J Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition. Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986 [TBL] [Abstract][Full Text] [Related]
5. Interdependence of Ca2+ occlusion sites in the unphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase complex with CrATP. Vilsen B; Andersen JP J Biol Chem; 1992 Feb; 267(5):3539-50. PubMed ID: 1531342 [TBL] [Abstract][Full Text] [Related]
6. Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca2+ATPase by quercetin. McKenna E; Smith JS; Coll KE; Mazack EK; Mayer EJ; Antanavage J; Wiedmann RT; Johnson RG J Biol Chem; 1996 Oct; 271(40):24517-25. PubMed ID: 8798712 [TBL] [Abstract][Full Text] [Related]
7. Ca2+ binding to occluded sites in the CrATP-ATPase complex of sarcoplasmic reticulum: evidence for two independent high-affinity sites. Coan C; Ji JY; Amaral JA Biochemistry; 1994 Mar; 33(12):3722-31. PubMed ID: 8142372 [TBL] [Abstract][Full Text] [Related]
8. Effects of monoclonal antibody against phospholamban on calcium pump ATPase of cardiac sarcoplasmic reticulum. Kimura Y; Inui M; Kadoma M; Kijima Y; Sasaki T; Tada M J Mol Cell Cardiol; 1991 Nov; 23(11):1223-30. PubMed ID: 1666413 [TBL] [Abstract][Full Text] [Related]
9. Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase. Reddy LG; Jones LR; Pace RC; Stokes DL J Biol Chem; 1996 Jun; 271(25):14964-70. PubMed ID: 8663079 [TBL] [Abstract][Full Text] [Related]
10. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum. Xu A; Narayanan N Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236 [TBL] [Abstract][Full Text] [Related]
12. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. Stephens EM; Grisham CM Biochemistry; 1979 Oct; 18(22):4876-85. PubMed ID: 228703 [TBL] [Abstract][Full Text] [Related]
13. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model. Stahl N; Jencks WP Biochemistry; 1987 Dec; 26(24):7654-67. PubMed ID: 2962640 [TBL] [Abstract][Full Text] [Related]
14. Phospholamban-mediated stimulation of Ca2+ uptake in sarcoplasmic reticulum from normal and failing hearts. Movsesian MA; Colyer J; Wang JH; Krall J J Clin Invest; 1990 May; 85(5):1698-702. PubMed ID: 2139670 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effects of phospholamban and jasmone on the calcium pump of cardiac sarcoplasmic reticulum. Evidence for modulation by phospholamban of both Ca2+ affinity and Vmax (Ca) of calcium transport. Antipenko AY; Spielman AI; Kirchberger MA J Biol Chem; 1997 Jan; 272(5):2852-60. PubMed ID: 9006928 [TBL] [Abstract][Full Text] [Related]
16. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]
17. Effect of diethyl pyrocarbonate modification on the calcium binding mechanism of the sarcoplasmic reticulum ATPase. Coan C; DiCarlo R J Biol Chem; 1990 Apr; 265(10):5376-84. PubMed ID: 2138607 [TBL] [Abstract][Full Text] [Related]
18. Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase. Fernandez-Belda F; Inesi G Biochemistry; 1986 Dec; 25(24):8083-9. PubMed ID: 2948567 [TBL] [Abstract][Full Text] [Related]
19. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. Shigekawa M; Finegan JA; Katz AM J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210 [TBL] [Abstract][Full Text] [Related]
20. Kinetic effects of calcium and ADP on the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Nakamura Y; Kurzmack M; Inesi G J Biol Chem; 1986 Mar; 261(7):3090-7. PubMed ID: 2936732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]