These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 8349597)
1. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. Ordentlich A; Barak D; Kronman C; Flashner Y; Leitner M; Segall Y; Ariel N; Cohen S; Velan B; Shafferman A J Biol Chem; 1993 Aug; 268(23):17083-95. PubMed ID: 8349597 [TBL] [Abstract][Full Text] [Related]
2. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. Barak D; Kronman C; Ordentlich A; Ariel N; Bromberg A; Marcus D; Lazar A; Velan B; Shafferman A J Biol Chem; 1994 Mar; 269(9):6296-305. PubMed ID: 8119978 [TBL] [Abstract][Full Text] [Related]
3. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096 [TBL] [Abstract][Full Text] [Related]
4. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284 [TBL] [Abstract][Full Text] [Related]
5. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. Ordentlich A; Barak D; Kronman C; Ariel N; Segall Y; Velan B; Shafferman A J Biol Chem; 1995 Feb; 270(5):2082-91. PubMed ID: 7836436 [TBL] [Abstract][Full Text] [Related]
6. Fasciculin 2 binds to the peripheral site on acetylcholinesterase and inhibits substrate hydrolysis by slowing a step involving proton transfer during enzyme acylation. Eastman J; Wilson EJ; Cerveñansky C; Rosenberry TL J Biol Chem; 1995 Aug; 270(34):19694-701. PubMed ID: 7649979 [TBL] [Abstract][Full Text] [Related]
7. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. Ordentlich A; Barak D; Kronman C; Ariel N; Segall Y; Velan B; Shafferman A J Biol Chem; 1996 May; 271(20):11953-62. PubMed ID: 8662593 [TBL] [Abstract][Full Text] [Related]
8. Stereoselectivity toward VX is determined by interactions with residues of the acyl pocket as well as of the peripheral anionic site of AChE. Ordentlich A; Barak D; Sod-Moriah G; Kaplan D; Mizrahi D; Segall Y; Kronman C; Karton Y; Lazar A; Marcus D; Velan B; Shafferman A Biochemistry; 2004 Sep; 43(35):11255-65. PubMed ID: 15366935 [TBL] [Abstract][Full Text] [Related]
9. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. Shafferman A; Velan B; Ordentlich A; Kronman C; Grosfeld H; Leitner M; Flashner Y; Cohen S; Barak D; Ariel N EMBO J; 1992 Oct; 11(10):3561-8. PubMed ID: 1396557 [TBL] [Abstract][Full Text] [Related]
10. The role of AChE active site gorge in determining stereoselectivity of charged and noncharged VX enantiomers. Ordentlich A; Barak D; Sod-Moriah G; Kaplan D; Mizrahi D; Segall Y; Kronman C; Karton Y; Lazar A; Marcus D; Velan B; Shafferman A Chem Biol Interact; 2005 Dec; 157-158():191-8. PubMed ID: 16289014 [TBL] [Abstract][Full Text] [Related]
11. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives. Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905 [TBL] [Abstract][Full Text] [Related]
12. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Masson P; Froment MT; Bartels CF; Lockridge O Eur J Biochem; 1996 Jan; 235(1-2):36-48. PubMed ID: 8631355 [TBL] [Abstract][Full Text] [Related]
13. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue. Triquigneaux MM; Ehrenshaft M; Roth E; Silman I; Ashani Y; Mason RP; Weiner L; Deterding LJ Biochem J; 2012 Nov; 448(1):83-91. PubMed ID: 22888904 [TBL] [Abstract][Full Text] [Related]
14. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers. Ordentlich A; Barak D; Kronman C; Benschop HP; De Jong LP; Ariel N; Barak R; Segall Y; Velan B; Shafferman A Biochemistry; 1999 Mar; 38(10):3055-66. PubMed ID: 10074358 [TBL] [Abstract][Full Text] [Related]
15. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886 [TBL] [Abstract][Full Text] [Related]
16. Functional characteristics of the oxyanion hole in human acetylcholinesterase. Ordentlich A; Barak D; Kronman C; Ariel N; Segall Y; Velan B; Shafferman A J Biol Chem; 1998 Jul; 273(31):19509-17. PubMed ID: 9677373 [TBL] [Abstract][Full Text] [Related]
17. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes. Ashani Y; Radić Z; Tsigelny I; Vellom DC; Pickering NA; Quinn DM; Doctor BP; Taylor P J Biol Chem; 1995 Mar; 270(11):6370-80. PubMed ID: 7890775 [TBL] [Abstract][Full Text] [Related]
18. Amino acids defining the acyl pocket of an invertebrate cholinesterase. Pezzementi L; Johnson K; Tsigelny I; Cotney J; Manning E; Barker A; Merritt S Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):813-32. PubMed ID: 14662305 [TBL] [Abstract][Full Text] [Related]
19. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases. Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273 [TBL] [Abstract][Full Text] [Related]
20. Functional requirements for the optimal catalytic configuration of the AChE active center. Shafferman A; Barak D; Kaplan D; Ordentlich A; Kronman C; Velan B Chem Biol Interact; 2005 Dec; 157-158():123-31. PubMed ID: 16256968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]