These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8349657)

  • 1. Age-dependent structural changes in intact human lenses detected by synchrotron radiation X-ray scattering. Correlation with Maillard reaction protein fluorescence.
    Suárez G; Oronsky AL; Koch MH
    J Biol Chem; 1993 Aug; 268(24):17716-21. PubMed ID: 8349657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-range order of crystallin proteins accounts for eye lens transparency.
    Delaye M; Tardieu A
    Nature; 1983 Mar 31-Apr 6; 302(5907):415-7. PubMed ID: 6835373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined elastic and Raman light scattering of human eye lenses.
    Yaroslavsky IV; Yaroslavsky AN; Otto C; Puppels GJ; Vrensen GF; Duindam H; Greve J
    Exp Eye Res; 1994 Oct; 59(4):393-9. PubMed ID: 7859814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-angle X-ray scattering studies of the intact eye lens: effect of crystallin composition and concentration on microstructure.
    Mirarefi AY; Boutet S; Ramakrishnan S; Kiss AJ; Cheng CH; Devries AL; Robinson IK; Zukoski CF
    Biochim Biophys Acta; 2010 Jun; 1800(6):556-64. PubMed ID: 20167250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative study of the crystallin supramolecular structure in the carp, frog, and rat lenses by small-angle roentgen ray scattering].
    Krivandin AV; Muranov KO
    Biofizika; 1999; 44(6):1088-93. PubMed ID: 10707284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [X-ray diffraction in the intact isolated frog ocular lens].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Biofizika; 1984; 29(5):873-7. PubMed ID: 6334537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens.
    Rao PV; Huang QL; Horwitz J; Zigler JS
    Biochim Biophys Acta; 1995 Dec; 1245(3):439-47. PubMed ID: 8541324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein size resolution in human eye lenses by dynamic light scattering after in vivo measurements.
    Dierks K; Dieckmann M; Niederstrasser D; Schwartz R; Wegener A
    Graefes Arch Clin Exp Ophthalmol; 1998 Jan; 236(1):18-23. PubMed ID: 9457512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Oftalmol Zh; 1989; (6):365-6. PubMed ID: 2622606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycation of crystallins in lenses from aging and diabetic individuals.
    van Boekel MA; Hoenders HJ
    FEBS Lett; 1992 Dec; 314(1):1-4. PubMed ID: 1451795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis.
    Tessier F; Obrenovich M; Monnier VM
    J Biol Chem; 1999 Jul; 274(30):20796-804. PubMed ID: 10409619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallin distribution patterns in concentric layers from toad eye lenses.
    Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of normal and aging lens gamma crystallins.
    Mandal K; Lerman S
    Ophthalmic Res; 1993; 25(5):295-301. PubMed ID: 8259262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.