These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8349702)

  • 1. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1993 Aug; 268(24):18259-66. PubMed ID: 8349702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose phosphorylation. Site-directed mutations which impair the catalytic function of hexokinase.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1991 Mar; 266(9):5359-62. PubMed ID: 2005085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction between the N- and C-terminal halves of human hexokinase II.
    Ardehali H; Printz RL; Whitesell RR; May JM; Granner DK
    J Biol Chem; 1999 Jun; 274(23):15986-9. PubMed ID: 10347146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose phosphorylation in tumor cells. Cloning, sequencing, and overexpression in active form of a full-length cDNA encoding a mitochondrial bindable form of hexokinase.
    Arora KK; Fanciulli M; Pedersen PL
    J Biol Chem; 1990 Apr; 265(11):6481-8. PubMed ID: 2318862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates.
    Magnani M; Bianchi M; Casabianca A; Stocchi V; Daniele A; Altruda F; Ferrone M; Silengo L
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):193-9. PubMed ID: 1637300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half.
    White TK; Wilson JE
    Arch Biochem Biophys; 1989 Nov; 274(2):375-93. PubMed ID: 2802617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate.
    Aleshin AE; Zeng C; Bartunik HD; Fromm HJ; Honzatko RB
    J Mol Biol; 1998 Sep; 282(2):345-57. PubMed ID: 9735292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interactions between the noncovalently associated N- and C-terminal halves of mammalian Type I hexokinase.
    Sui D; Wilson JE
    Arch Biochem Biophys; 2002 May; 401(1):21-8. PubMed ID: 12054483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail.
    Morris MT; DeBruin C; Yang Z; Chambers JW; Smith KS; Morris JC
    Eukaryot Cell; 2006 Dec; 5(12):2014-23. PubMed ID: 17028241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi.
    Cáceres AJ; Portillo R; Acosta H; Rosales D; Quiñones W; Avilan L; Salazar L; Dubourdieu M; Michels PA; Concepción JL
    Mol Biochem Parasitol; 2003 Feb; 126(2):251-62. PubMed ID: 12615324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human beta-cell glucokinase. Dual role of Ser-151 in catalysis and hexose affinity.
    Xu LZ; Harrison RW; Weber IT; Pilkis SJ
    J Biol Chem; 1995 Apr; 270(17):9939-46. PubMed ID: 7730377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of non-catalytic ATP to human hexokinase I highlights the structural components for enzyme-membrane association control.
    Rosano C; Sabini E; Rizzi M; Deriu D; Murshudov G; Bianchi M; Serafini G; Magnani M; Bolognesi M
    Structure; 1999 Nov; 7(11):1427-37. PubMed ID: 10574795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1997 Feb; 338(2):183-92. PubMed ID: 9028870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
    Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ
    Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of enzyme function of the type II hexokinase C-terminal half on replacements of restricted regions by corresponding regions of glucokinase.
    Kogure K; Yamamoto K; Majima E; Shinohara Y; Yamashita K; Terada H
    J Biol Chem; 1996 Jun; 271(25):15230-6. PubMed ID: 8662949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.