BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

869 related articles for article (PubMed ID: 8350136)

  • 21. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells.
    Storm JF
    J Physiol; 1989 Feb; 409():171-90. PubMed ID: 2585290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment.
    Booth V; Rinzel J; Kiehn O
    J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro.
    Osmanović SS; Shefner SA
    J Physiol; 1993 Sep; 469():89-109. PubMed ID: 7903697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons.
    Li X; Bennett DJ
    J Neurophysiol; 2007 May; 97(5):3314-30. PubMed ID: 17360829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sources of Ca2+ for different Ca(2+)-activated K+ conductances in neurones of the rat superior cervical ganglion.
    Davies PJ; Ireland DR; McLachlan EM
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):353-66. PubMed ID: 8887749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of channels involved in Ca(2+) activation of K(+) channels during the prolonged AHP in guinea-pig sympathetic neurons.
    Martínez-Pinna J; Davies PJ; McLachlan EM
    J Neurophysiol; 2000 Sep; 84(3):1346-54. PubMed ID: 10980007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specificity in the interaction of high-voltage-activated Ca
    Kirchner MK; Foehring RC; Callaway J; Armstrong WE
    J Neurophysiol; 2018 Oct; 120(4):1728-1739. PubMed ID: 30020842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons.
    Sah P
    J Neurophysiol; 1992 Dec; 68(6):2237-47. PubMed ID: 1491269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons.
    Sun X; Gu XQ; Haddad GG
    J Neurosci; 2003 May; 23(9):3639-48. PubMed ID: 12736335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical properties of facial motoneurons in brainstem slices from guinea pig.
    Nishimura Y; Schwindt PC; Crill WE
    Brain Res; 1989 Nov; 502(1):127-42. PubMed ID: 2819451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic conductances contributing to spike repolarization and after-potentials in rat medial vestibular nucleus neurones.
    Johnston AR; MacLeod NK; Dutia MB
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):61-77. PubMed ID: 7531769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionic mechanisms of action of neurotensin in acutely dissociated neurons from the diagonal band of Broca of the rat.
    Jassar BS; Harris KH; Ostashewski PM; Jhamandas JH
    J Neurophysiol; 1999 Jan; 81(1):234-46. PubMed ID: 9914284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-activated K+ currents of hypoglossal motoneurons in a brain stem slice preparation from the neonatal rat.
    Lape R; Nistri A
    J Neurophysiol; 1999 Jan; 81(1):140-8. PubMed ID: 9914275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats.
    Zhang L; Valiante TA; Carlen PL
    J Neurophysiol; 1993 Jul; 70(1):223-31. PubMed ID: 8395576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Afterhyperpolarization current in myenteric neurons of the guinea pig duodenum.
    Vogalis F; Furness JB; Kunze WA
    J Neurophysiol; 2001 May; 85(5):1941-51. PubMed ID: 11353011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.