These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 8350984)

  • 1. Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons.
    Higashi H; Tanaka E; Inokuchi H; Nishi S
    Neuroscience; 1993 Jul; 55(1):129-38. PubMed ID: 8350984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent chloride current in neurones of the rabbit pelvic parasympathetic ganglia.
    Akasu T; Nishimura T; Tokimasa T
    J Physiol; 1990 Mar; 422():303-20. PubMed ID: 1693681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones.
    Chesnoy-Marchais D
    J Physiol; 1983 Sep; 342():277-308. PubMed ID: 6415266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane properties of guinea pig cingulate cortical neurons in vitro.
    Tanaka E; Higashi H; Nishi S
    J Neurophysiol; 1991 Apr; 65(4):808-21. PubMed ID: 2051205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperpolarization-activated inward potassium and calcium-sensitive chloride currents in beating pacemaker insect neurosecretory cells (dorsal unpaired median neurons).
    Raymond V; Lapied B
    Neuroscience; 1999; 93(3):1207-18. PubMed ID: 10473286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Afterdepolarization mechanism in the in vitro, cesium-loaded, sympathetic preganglionic neuron of the cat.
    Yoshimura M; Polosa C; Nishi S
    J Neurophysiol; 1987 May; 57(5):1325-37. PubMed ID: 3585470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone.
    Gorman AL; Hermann A; Thomas MV
    J Physiol; 1982 Jun; 327():185-217. PubMed ID: 7120137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig.
    Matsuda H; Noma A
    J Physiol; 1984 Dec; 357():553-73. PubMed ID: 6096535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a calcium-dependent current generating a slow afterdepolarization of CA3 pyramidal cells in rat hippocampal slice cultures.
    Caeser M; Brown DA; Gähwiler BH; Knöpfel T
    Eur J Neurosci; 1993 Jun; 5(6):560-9. PubMed ID: 8261130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vasoactive intestinal contractor on voltage-activated Ca2+ currents in feline parasympathetic neurons.
    Nishimura T; Krier J; Akasu T
    Am J Physiol; 1993 Dec; 265(6 Pt 1):G1158-68. PubMed ID: 8279567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro.
    Constanti A; Sim JA
    J Physiol; 1987 Jun; 387():173-94. PubMed ID: 2443678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A calcium-dependent slow afterdepolarization recorded in rat dorsolateral septal nucleus neurons in vitro.
    Hasuo H; Phelan KD; Twery MJ; Gallagher JP
    J Neurophysiol; 1990 Dec; 64(6):1838-46. PubMed ID: 2074467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic currents underlying the action potential of Rana pipiens oocytes.
    Schlichter LC
    Dev Biol; 1989 Jul; 134(1):59-71. PubMed ID: 2471665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells.
    Korn SJ; Weight FF
    J Neurophysiol; 1987 Dec; 58(6):1431-51. PubMed ID: 2449518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Na+ and K+ on Cl- distribution in guinea-pig vas deferens smooth muscle: evidence for Na+, K+, Cl- co-transport.
    Aickin CC; Brading AF
    J Physiol; 1990 Feb; 421():13-32. PubMed ID: 1693397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole cell current analyses of pancreatic acinar AR42J cells. I. Voltage- and Ca(2+)-activated currents.
    Kusano K; Gainer H
    Am J Physiol; 1991 May; 260(5 Pt 1):C934-48. PubMed ID: 1852108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones.
    McCormick DA; Pape HC
    J Physiol; 1990 Dec; 431():291-318. PubMed ID: 1712843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium.
    Joseph DP; Miller SS
    J Gen Physiol; 1992 Feb; 99(2):263-90. PubMed ID: 1319462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.