BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8351968)

  • 1. Effects of the fluorescence dye DAPI on microtubule structure in vitro: formation of novel types of tubulin assembly products.
    Vater W; Böhm KJ; Unger E
    Acta Histochem; 1993 Feb; 94(1):54-66. PubMed ID: 8351968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is microtubule assembly a biphasic process? A fluorimetric study using 4',6-diamidino-2-phenylindole as a probe.
    Heusele C; Bonne D; Carlier MF
    Eur J Biochem; 1987 Jun; 165(3):613-20. PubMed ID: 3595603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4',6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules.
    Bonne D; Heuséle C; Simon C; Pantaloni D
    J Biol Chem; 1985 Mar; 260(5):2819-25. PubMed ID: 3972806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of double-walled microtubules and multilayered tubulin sheets by basic proteins.
    Unger E; Böhm KJ; Müller H; Grossman H; Fenske H; Vater W
    Eur J Cell Biol; 1988 Apr; 46(1):98-104. PubMed ID: 2456217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy.
    Simon JR; Salmon ED
    J Cell Sci; 1990 Aug; 96 ( Pt 4)():571-82. PubMed ID: 2283357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulin assembly in the presence of calcium ions and taxol: microtubule bundling and formation of macrotubule-ring complexes.
    Vater W; Böhm KJ; Unger E
    Cell Motil Cytoskeleton; 1997; 36(1):76-83. PubMed ID: 8986379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. At least one of the protofilaments in flagellar microtubules is not composed of tubulin.
    Nojima D; Linck RW; Egelman EH
    Curr Biol; 1995 Feb; 5(2):158-67. PubMed ID: 7743179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro.
    Böhm KJ; Vater W; Fenske H; Unger E
    Biochim Biophys Acta; 1984 Jul; 800(2):119-26. PubMed ID: 6743686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics within mixed populations of microtubules and protofilament ribbons.
    Böhm KJ; Vater W; Steinmetzer P; Unger E
    Biochim Biophys Acta; 1987 Jul; 929(2):154-63. PubMed ID: 2885034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules.
    Andreu JM; Bordas J; Diaz JF; García de Ancos J; Gil R; Medrano FJ; Nogales E; Pantos E; Towns-Andrews E
    J Mol Biol; 1992 Jul; 226(1):169-84. PubMed ID: 1352357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors regulating microtubule structure--a minireview.
    Unger E; Böhm KJ; Vater W
    Acta Histochem Suppl; 1986; 33():85-94. PubMed ID: 3090644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microtubule associated proteins on the production of polymorphic products from tubulin and microtubules.
    Fakhari SM; Taylor DL; Burton PR; Himes RH
    Cell Biol Int Rep; 1984 Dec; 8(12):1041-50. PubMed ID: 6518523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate?
    Wade RH; Chrétien D; Job D
    J Mol Biol; 1990 Apr; 212(4):775-86. PubMed ID: 2329582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of vanadate on the assembly and disassembly of purified tubulin.
    Kirazov EP; Weiss DG
    Cell Motil Cytoskeleton; 1986; 6(3):314-23. PubMed ID: 3638162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of Taxotere-induced microtubules to 3-nm resolution. The change in protofilament number is linked to the binding of the taxol side chain.
    Andreu JM; Díaz JF; Gil R; de Pereda JM; García de Lacoba M; Peyrot V; Briand C; Towns-Andrews E; Bordas J
    J Biol Chem; 1994 Dec; 269(50):31785-92. PubMed ID: 7989352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule structure at improved resolution.
    Meurer-Grob P; Kasparian J; Wade RH
    Biochemistry; 2001 Jul; 40(27):8000-8. PubMed ID: 11434769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of DAPI in microtubule reactions at steady-state.
    Heusèle C; Bonne D
    Biochem Biophys Res Commun; 1985 Dec; 133(2):662-9. PubMed ID: 4084292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-based assays for microtubule architecture.
    Bechstedt S; Brouhard GJ
    Methods Cell Biol; 2013; 115():343-54. PubMed ID: 23973082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice defects in microtubules: protofilament numbers vary within individual microtubules.
    Chrétien D; Metoz F; Verde F; Karsenti E; Wade RH
    J Cell Biol; 1992 Jun; 117(5):1031-40. PubMed ID: 1577866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependency of microtubule-associated proteins (MAPs) for tubulin stability and assembly; use of estramustine phosphate in the study of microtubules.
    Fridén B; Wallin M
    Mol Cell Biochem; 1991 Jul; 105(2):149-58. PubMed ID: 1681420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.