These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Natural genetic variation in social environment choice: context-dependent gene-environment correlation in Drosophila melanogaster. Saltz JB Evolution; 2011 Aug; 65(8):2325-34. PubMed ID: 21790578 [TBL] [Abstract][Full Text] [Related]
4. Aging: the fitness-stress continuum and genetic variability. Parsons PA Exp Aging Res; 2002; 28(4):347-59. PubMed ID: 12227918 [TBL] [Abstract][Full Text] [Related]
5. Molecular Basis for Adaptation of Oysters to Stressful Marine Intertidal Environments. Zhang G; Li L; Meng J; Qi H; Qu T; Xu F; Zhang L Annu Rev Anim Biosci; 2016; 4():357-81. PubMed ID: 26515272 [TBL] [Abstract][Full Text] [Related]
6. Drosophila as a useful model for understanding the evolutionary physiology of obesity resistance and metabolic thrift. J Gray L; B Sokolowski M; J Simpson S Fly (Austin); 2021 Dec; 15(1):47-59. PubMed ID: 33704003 [TBL] [Abstract][Full Text] [Related]
7. The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection. Parsons PA Q Rev Biol; 2001 Dec; 76(4):459-67. PubMed ID: 11783398 [TBL] [Abstract][Full Text] [Related]
9. [Role of juvenile hormone metabolism in the adaptation of Drosophila populations to stressful environmental conditions]. Gruntenko NE; Khlebodarova TM; Mazurov MM; Grenbék LG; Sukhanova MZh; Zakharov IK; Khémmok BD; Raushenbakh IIu Genetika; 1996 Sep; 32(9):1191-8. PubMed ID: 9026460 [TBL] [Abstract][Full Text] [Related]
10. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Parsons PA Biol Rev Camb Philos Soc; 2005 Nov; 80(4):589-610. PubMed ID: 16221331 [TBL] [Abstract][Full Text] [Related]
11. Stress and adaptation in conservation genetics. Frankham R J Evol Biol; 2005 Jul; 18(4):750-5. PubMed ID: 16033545 [TBL] [Abstract][Full Text] [Related]
12. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster. Condon C; Cooper BS; Yeaman S; Angilletta MJ Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128 [TBL] [Abstract][Full Text] [Related]
13. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster. Parkash R; Ranga P; Aggarwal DD Comp Biochem Physiol A Mol Integr Physiol; 2014 Sep; 175():46-56. PubMed ID: 24845200 [TBL] [Abstract][Full Text] [Related]
14. From the stress theory of aging to energetic and evolutionary expectations for longevity. Parsons PA Biogerontology; 2003; 4(2):63-73. PubMed ID: 12766531 [TBL] [Abstract][Full Text] [Related]
15. Low evolutionary potential for egg-to-adult viability in Drosophila melanogaster at high temperatures. Kristensen TN; Overgaard J; Lassen J; Hoffmann AA; Sgrò C Evolution; 2015 Mar; 69(3):803-14. PubMed ID: 25644054 [TBL] [Abstract][Full Text] [Related]
16. Interactions between environmental stress and male mating success may enhance evolutionary divergence of stress-resistant Drosophila populations. Gefen E; Gibbs AG Evolution; 2009 Jun; 63(6):1653-9. PubMed ID: 19187243 [TBL] [Abstract][Full Text] [Related]
17. Rapid genomic changes in Drosophila melanogaster adapting to desiccation stress in an experimental evolution system. Kang L; Aggarwal DD; Rashkovetsky E; Korol AB; Michalak P BMC Genomics; 2016 Mar; 17():233. PubMed ID: 26979755 [TBL] [Abstract][Full Text] [Related]