These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mechanistic implications of variable stoichiometries of oxygen consumption during tyrosinase catalyzed oxidation of monophenols and o-diphenols. Peñalver MJ; Hiner AN; Rodríguez-López JN; García-Cánovas F; Tudela J Biochim Biophys Acta; 2002 May; 1597(1):140-8. PubMed ID: 12009413 [TBL] [Abstract][Full Text] [Related]
4. Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. Fenoll LG; Rodríguez-López JN; García-Sevilla F; García-Ruiz PA; Varón R; García-Cánovas F; Tudela J Biochim Biophys Acta; 2001 Jul; 1548(1):1-22. PubMed ID: 11451433 [TBL] [Abstract][Full Text] [Related]
5. An approximate analytical solution to the lag period of monophenolase activity of tyrosinase. Molina FG; Muñoz JL; Varón R; López JN; Cánovas FG; Tudela J Int J Biochem Cell Biol; 2007; 39(1):238-52. PubMed ID: 17010655 [TBL] [Abstract][Full Text] [Related]
6. Tyrosinase kinetics: discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates. Fenoll LG; Peñalver MJ; Rodríguez-López JN; Varón R; García-Cánovas F; Tudela J Int J Biochem Cell Biol; 2004 Feb; 36(2):235-46. PubMed ID: 14643889 [TBL] [Abstract][Full Text] [Related]
7. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol. Sugumaran M; Bolton JL Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954 [TBL] [Abstract][Full Text] [Related]
12. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Sugumaran M; Bolton J Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501 [TBL] [Abstract][Full Text] [Related]
13. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase. Toussaint O; Lerch K Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867 [TBL] [Abstract][Full Text] [Related]
14. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase. Gowda LR; Paul B J Agric Food Chem; 2002 Mar; 50(6):1608-14. PubMed ID: 11879044 [TBL] [Abstract][Full Text] [Related]
15. Kinetic characterisation of o-aminophenols and aromatic o-diamines as suicide substrates of tyrosinase. Muñoz-Muñoz JL; Garcia-Molina F; Berna J; Garcia-Ruiz PA; Varon R; Tudela J; Rodriguez-Lopez JN; Garcia-Canovas F Biochim Biophys Acta; 2012 Apr; 1824(4):647-55. PubMed ID: 22342555 [TBL] [Abstract][Full Text] [Related]
16. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Espín JC; Varón R; Fenoll LG; Gilabert MA; García-Ruíz PA; Tudela J; García-Cánovas F Eur J Biochem; 2000 Mar; 267(5):1270-9. PubMed ID: 10691963 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a kinetic model for melanin biosynthesis pathway. Rodríguez-López JN; Tudela J; Varón R; García-Carmona F; García-Cánovas F J Biol Chem; 1992 Feb; 267(6):3801-10. PubMed ID: 1740428 [TBL] [Abstract][Full Text] [Related]
18. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Ros JR; Rodríguez-López JN; García-Cánovas F Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):309-12. PubMed ID: 8216233 [TBL] [Abstract][Full Text] [Related]
19. Chemical and enzymic oxidation by tyrosinase of 3,4-dihydroxymandelate. Cabanes J; Sanchez-Ferrer A; Bru R; García-Carmona F Biochem J; 1988 Dec; 256(2):681-4. PubMed ID: 3146978 [TBL] [Abstract][Full Text] [Related]
20. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis. Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]