These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8352767)

  • 21. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore.
    Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ
    Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural organization of the voltage sensor in voltage-dependent potassium channels.
    Papazian DM; Silverman WR; Lin MC; Tiwari-Woodruff SK; Tang CY
    Novartis Found Symp; 2002; 245():178-90; discussion 190-2, 261-4. PubMed ID: 12027007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors.
    Zhou M; Morais-Cabral JH; Mann S; MacKinnon R
    Nature; 2001 Jun; 411(6838):657-61. PubMed ID: 11395760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovering potassium channel blockers from synthetic compound database by using structure-based virtual screening in conjunction with electrophysiological assay.
    Liu H; Gao ZB; Yao Z; Zheng S; Li Y; Zhu W; Tan X; Luo X; Shen J; Chen K; Hu GY; Jiang H
    J Med Chem; 2007 Jan; 50(1):83-93. PubMed ID: 17201412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A set of homology models of pore loop domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6.
    Liu HL; Lin JC
    Proteins; 2004 May; 55(3):558-67. PubMed ID: 15103620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potassium channels: a computer prediction of structure and selectivity.
    Bradley JC; Richards WG
    Protein Eng; 1994 Jul; 7(7):859-62. PubMed ID: 7971948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shaker pore structure as predicted by annealed atomic simulation using symmetry and novel geometric restraints.
    Yang PK; Lee CY; Hwang MJ
    Biophys J; 1997 Jun; 72(6):2479-89. PubMed ID: 9168024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.
    Kerr ID; Sansom MS
    Biophys J; 1997 Aug; 73(2):581-602. PubMed ID: 9251779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.
    Durell SR; Guy HR
    Neuropharmacology; 1996; 35(7):761-73. PubMed ID: 8938709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family.
    Grupe A; Schröter KH; Ruppersberg JP; Stocker M; Drewes T; Beckh S; Pongs O
    EMBO J; 1990 Jun; 9(6):1749-56. PubMed ID: 2347305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of H5, S6, and H5-S6 exchanges on pore properties of voltage-dependent K+ channels.
    Taglialatela M; Champagne MS; Drewe JA; Brown AM
    J Biol Chem; 1994 May; 269(19):13867-73. PubMed ID: 8188663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Affinity of C60 neat fullerenes with membrane proteins: a computational study on potassium channels.
    Kraszewski S; Tarek M; Treptow W; Ramseyer C
    ACS Nano; 2010 Jul; 4(7):4158-64. PubMed ID: 20568711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The internal quaternary ammonium receptor site of Shaker potassium channels.
    Choi KL; Mossman C; Aubé J; Yellen G
    Neuron; 1993 Mar; 10(3):533-41. PubMed ID: 8461140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels.
    Ahern CA; Eastwood AL; Lester HA; Dougherty DA; Horn R
    J Gen Physiol; 2006 Dec; 128(6):649-57. PubMed ID: 17130518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MinK potassium channels are heteromultimeric complexes.
    Tai KK; Wang KW; Goldstein SA
    J Biol Chem; 1997 Jan; 272(3):1654-8. PubMed ID: 8999841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model for the K+ channel pore based on close packing of helices with substantial tryptophan bulk.
    Courtney KR
    Proc West Pharmacol Soc; 1992; 35():171-5. PubMed ID: 1502218
    [No Abstract]   [Full Text] [Related]  

  • 39. Molecular simulation of the interaction of kappa-conotoxin-PVIIA with the Shaker potassium channel pore.
    Moran O
    Eur Biophys J; 2001 Dec; 30(7):528-36. PubMed ID: 11820396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical assessment of a proposed model of Shaker.
    Lainé M; Papazian DM; Roux B
    FEBS Lett; 2004 Apr; 564(3):257-63. PubMed ID: 15111106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.