These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8353322)

  • 21. Structure of the phenazine biosynthesis enzyme PhzG.
    Parsons JF; Calabrese K; Eisenstein E; Ladner JE
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2110-3. PubMed ID: 15502343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79.
    Parsons JF; Song F; Parsons L; Calabrese K; Eisenstein E; Ladner JE
    Biochemistry; 2004 Oct; 43(39):12427-35. PubMed ID: 15449932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis.
    Xu N; Ahuja EG; Janning P; Mavrodi DV; Thomashow LS; Blankenfeldt W
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1403-13. PubMed ID: 23897464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of diarylethane structures by Pseudomonas fluorescens biovar I.
    González B; Olave I; Calderón I; Vicuña R
    Arch Microbiol; 1988; 149(5):389-94. PubMed ID: 3132905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.
    Roquigny R; Novinscak A; Arseneault T; Joly DL; Filion M
    BMC Genomics; 2018 Jun; 19(1):474. PubMed ID: 29914352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.
    Thomashow LS; Weller DM
    J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84.
    Maddula VS; Zhang Z; Pierson EA; Pierson LS
    Microb Ecol; 2006 Aug; 52(2):289-301. PubMed ID: 16897305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens.
    Boruah HP; Kumar BS
    Folia Microbiol (Praha); 2002; 47(4):359-63. PubMed ID: 12422510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.
    Arseneault T; Goyer C; Filion M
    Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens.
    Timms-Wilson TM; Ellis RJ; Renwick A; Rhodes DJ; Mavrodi DV; Weller DM; Thomashow LS; Bailey MJ
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1293-300. PubMed ID: 11106021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm.
    Poritsanos N; Selin C; Fernando WG; Nakkeeran S; de Kievit TR
    Can J Microbiol; 2006 Dec; 52(12):1177-88. PubMed ID: 17473887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlations between pantothenate uptake, phospholipid synthesis and pantothenate-binding protein formation in Pseudomonas fluorescens P-2.
    Mäntsälä P
    Acta Chem Scand B; 1974; 28(1):78-84. PubMed ID: 4211893
    [No Abstract]   [Full Text] [Related]  

  • 34. Incorporation of [14C]shikimate into plenazines and their further metabolism by Pseudomonas phenazinium.
    Byng GS; Turner JM
    Biochem J; 1977 Apr; 164(1):139-45. PubMed ID: 880226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of iron-beryllium antagonism on the growth of Pseudomonas fluorescens type S.
    MacCordick J; Youinou MT; Wurtz B
    Folia Microbiol (Praha); 1977; 22(1):35-9. PubMed ID: 190091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study of the growth of a strain of Pseudomonas fluorescens, R type. 3. Role of Fe 3+ ions].
    Wurtz B
    C R Seances Soc Biol Fil; 1971; 165(12):2436-41. PubMed ID: 4263382
    [No Abstract]   [Full Text] [Related]  

  • 37. Phenazine-1-Carboxylic Acid Production by Pseudomonas fluorescens LBUM636 Alters Phytophthora infestans Growth and Late Blight Development.
    Morrison CK; Arseneault T; Novinscak A; Filion M
    Phytopathology; 2017 Mar; 107(3):273-279. PubMed ID: 27827009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum.
    Costa KC; Moskatel LS; Meirelles LA; Newman DK
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of growth conditions on Pseudomonas fluorescens strains: a link between metabolite production and the PLFA profile.
    Fouchard S; Abdellaoui-Maâne Z; Boulanger A; Llopiz P; Neunlist S
    FEMS Microbiol Lett; 2005 Oct; 251(2):211-8. PubMed ID: 16143465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aluminum detoxication mechanism in Pseudomonas fluorescens is dependent on iron.
    Appanna VD; Hamel R
    FEMS Microbiol Lett; 1996 Oct; 143(2-3):223-8. PubMed ID: 8964457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.