These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8353618)

  • 1. Airflow measurements: theory and utility of findings.
    Miller CJ; Daniloff R
    J Voice; 1993 Mar; 7(1):38-46. PubMed ID: 8353618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady flow through in-vitro models of the glottis.
    Hofmans GC; Groot G; Ranucci M; Graziani G; Hirschberg A
    J Acoust Soc Am; 2003 Mar; 113(3):1658-75. PubMed ID: 12656399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term variation of subglottal pressure for expressive purposes in singing and stage speech: a preliminary investigation.
    Sundberg J; Elliot N; Gramming P; Nord L
    J Voice; 1993 Sep; 7(3):227-34. PubMed ID: 8353640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of exit radii on intraglottal pressure distributions in the convergent glottis.
    Scherer RC; De Witt KJ; Kucinschi BR
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2267-9. PubMed ID: 11757915
    [No Abstract]   [Full Text] [Related]  

  • 11. Aerodynamics of phonation.
    Schutte HK
    Acta Otorhinolaryngol Belg; 1986; 40(2):344-57. PubMed ID: 3751529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal fold collision threshold pressure: An alternative to phonation threshold pressure?
    Enflo L; Sundberg J
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):210-7. PubMed ID: 19916893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling measured glottal volume velocity waveforms.
    Verneuil A; Berry DA; Kreiman J; Gerratt BR; Ye M; Berke GS
    Ann Otol Rhinol Laryngol; 2003 Feb; 112(2):120-31. PubMed ID: 12597284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laryngeal flow due to longitudinal sweeping motion of the vocal folds and its contribution to auto-oscillation.
    Boutin H; Smith J; Wolfe J
    J Acoust Soc Am; 2015 Jul; 138(1):146-9. PubMed ID: 26233015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of collision on the flow through in-vitro rigid models of the vocal folds.
    Deverge M; Pelorson X; Vilain C; Lagrée PY; Chentouf F; Willems J; Hirschberg A
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3354-62. PubMed ID: 14714815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse-filtered air flow and EGG measures for sustained vowels and syllables.
    Higgins MB; Saxman JH
    J Voice; 1993 Mar; 7(1):47-53. PubMed ID: 8353619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation.
    Titze IR
    J Speech Lang Hear Res; 2006 Apr; 49(2):439-47. PubMed ID: 16671855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.