These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8353622)
1. A critical view of the yawn-sigh as a voice therapy technique. Boone DR; McFarlane SC J Voice; 1993 Mar; 7(1):75-80. PubMed ID: 8353622 [TBL] [Abstract][Full Text] [Related]
2. Effect of two isolated vocal facilitating techniques glottal fry and yawn-sigh on the phonation of female speech-language pathology students: A pilot study. Meerschman I; D'haeseleer E; Catry T; Ruigrok B; Claeys S; Van Lierde K J Commun Disord; 2017 Mar; 66():40-50. PubMed ID: 28412598 [TBL] [Abstract][Full Text] [Related]
3. Source and filter adjustments affecting the perception of the vocal qualities twang and yawn. Titze IR; Bergan CC; Hunter EJ; Story B Logoped Phoniatr Vocol; 2003; 28(4):147-55. PubMed ID: 14686543 [TBL] [Abstract][Full Text] [Related]
4. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood. Ménard L; Schwartz JL; Boë LJ J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462 [TBL] [Abstract][Full Text] [Related]
5. Effects of stimulation techniques on vocal responses: implications for assessment and treatment. Shrivastav R; Yamaguchi H; Andrews M J Voice; 2000 Sep; 14(3):322-30. PubMed ID: 11021500 [TBL] [Abstract][Full Text] [Related]
6. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing. Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691 [TBL] [Abstract][Full Text] [Related]
7. Acoustic roles of the laryngeal cavity in vocal tract resonance. Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318 [TBL] [Abstract][Full Text] [Related]
8. Differentiated vocal tract control and the reliability of interpretations of nasendoscopic assessment. Madill C; Sheard C; Heard R J Voice; 2010 May; 24(3):337-45. PubMed ID: 19660904 [TBL] [Abstract][Full Text] [Related]
9. Firing pattern of motor units in the vocal muscle during phonation. Sram F; Syka J Acta Otolaryngol; 1977; 84(1-2):132-7. PubMed ID: 899750 [TBL] [Abstract][Full Text] [Related]
10. Stroboscopic and acoustic measures of inspiratory phonation. Kelly CL; Fisher KV J Voice; 1999 Sep; 13(3):389-402. PubMed ID: 10498055 [TBL] [Abstract][Full Text] [Related]
11. The effects of fundamental frequency level on voice onset time in normal adult male speakers. McCrea CR; Morris RJ J Speech Lang Hear Res; 2005 Oct; 48(5):1013-24. PubMed ID: 16411791 [TBL] [Abstract][Full Text] [Related]
12. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related]
17. A comparative acoustic analysis of voice production by near-total laryngectomy and normal laryngeal speakers. Hoasjoe DK; Martin GF; Doyle PC; Wong FS J Otolaryngol; 1992 Feb; 21(1):39-43. PubMed ID: 1564748 [TBL] [Abstract][Full Text] [Related]
18. Acoustic comparison of vowel articulation in normal and reverse phonation. Robb MP; Chen Y; Gilbert HR; Lerman JW J Speech Lang Hear Res; 2001 Feb; 44(1):118-27. PubMed ID: 11218096 [TBL] [Abstract][Full Text] [Related]
19. Influence of Voice Focus on Oral-Nasal Balance in Speech. de Boer G; Bressmann T J Voice; 2016 Nov; 30(6):705-710. PubMed ID: 26494180 [TBL] [Abstract][Full Text] [Related]
20. [Comparison of the results of acoustic analysis of the voice recorded by different methods]. Chernobel'skiĭ SI Vestn Otorinolaringol; 2014; (1):41-3. PubMed ID: 24577031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]