These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 8353887)

  • 1. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs.
    Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW
    Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation.
    Chang MW; Coffeen P; Lurie KG; Shultz J; Bache RJ; White CW
    Chest; 1994 Oct; 106(4):1250-9. PubMed ID: 7924505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve.
    Lurie KG; Coffeen P; Shultz J; McKnite S; Detloff B; Mulligan K
    Circulation; 1995 Mar; 91(6):1629-32. PubMed ID: 7882467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of positive end-expiratory pressure during active compression decompression cardiopulmonary resuscitation with the inspiratory threshold valve.
    Voelckel WG; Lurie KG; Zielinski T; McKnite S; Plaisance P; Wenzel V; Lindner KH
    Anesth Analg; 2001 Apr; 92(4):967-74. PubMed ID: 11273935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression-decompression CPR utilizing an impedance threshold device.
    Burnett AM; Segal N; Salzman JG; McKnite MS; Frascone RJ
    Resuscitation; 2012 Aug; 83(8):1021-4. PubMed ID: 22445865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG
    Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve.
    Raedler C; Voelckel WG; Wenzel V; Bahlmann L; Baumeier W; Schmittinger CA; Herff H; Krismer AC; Lindner KH; Lurie KG
    Anesth Analg; 2002 Dec; 95(6):1496-502, table of contents. PubMed ID: 12456407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary Resuscitation Working Group.
    Cohen TJ; Tucker KJ; Lurie KG; Redberg RF; Dutton JP; Dwyer KA; Schwab TM; Chin MC; Gelb AM; Scheinman MM
    JAMA; 1992 Jun; 267(21):2916-23. PubMed ID: 1583761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest.
    Segal N; Metzger AK; Moore JC; India L; Lick MC; Berger PS; Tang W; Benditt DG; Lurie KG
    Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28899911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different compression--decompression cycles on haemodynamics during ACD-CPR in pigs.
    Sunde K; Wik L; Naess PA; Ilebekk A; Nicolaysen G; Steen PA
    Resuscitation; 1998 Feb; 36(2):123-31. PubMed ID: 9571728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head and thorax elevation during active compression decompression cardiopulmonary resuscitation with an impedance threshold device improves cerebral perfusion in a swine model of prolonged cardiac arrest.
    Moore JC; Segal N; Lick MC; Dodd KW; Salverda BJ; Hinke MB; Robinson AE; Debaty G; Lurie KG
    Resuscitation; 2017 Dec; 121():195-200. PubMed ID: 28827197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic effects of active compression-decompression after prolonged CPR.
    Malzer R; Zeiner A; Binder M; Domanovits H; Knappitsch G; Sterz F; Laggner AN
    Resuscitation; 1996 Jun; 31(3):243-53. PubMed ID: 8783410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phased chest and abdominal compression-decompression cardiopulmonary resuscitation on myocardial and cerebral blood flow in pigs.
    Wenzel V; Lindner KH; Prengel AW; Strohmenger HU
    Crit Care Med; 2000 Apr; 28(4):1107-12. PubMed ID: 10809291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG
    Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vest cardiopulmonary resuscitation on cerebral and coronary perfusion in an infant porcine model.
    Shaffner DH; Schleien CL; Koehler RC; Eberle B; Traystman RJ
    Crit Care Med; 1994 Nov; 22(11):1817-26. PubMed ID: 7956287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of graded doses of epinephrine on both noninvasive and invasive measures of myocardial perfusion and blood flow during cardiopulmonary resuscitation.
    Chase PB; Kern KB; Sanders AB; Otto CW; Ewy GA
    Crit Care Med; 1993 Mar; 21(3):413-9. PubMed ID: 8440112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study.
    Kwon Y; Debaty G; Puertas L; Metzger A; Rees J; McKnite S; Yannopoulos D; Lurie K
    Scand J Trauma Resusc Emerg Med; 2015 Oct; 23():83. PubMed ID: 26511270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.