BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 8355280)

  • 1. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions.
    Perkins SJ; Smith KF; Williams SC; Haris PI; Chapman D; Sim RB
    J Mol Biol; 1994 Apr; 238(1):104-19. PubMed ID: 8145250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR study of the thermal denaturation of horseradish and cytochrome c peroxidases in D2O.
    Holzbaur IE; English AM; Ismail AA
    Biochemistry; 1996 Apr; 35(17):5488-94. PubMed ID: 8611540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structure of proteins associated in thin films.
    Safar J; Roller PP; Ruben GC; Gajdusek DC; Gibbs CJ
    Biopolymers; 1993 Sep; 33(9):1461-76. PubMed ID: 8400035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the unfolding and refolding of ribonuclease T1 by a stopped-flow double-mixing technique.
    Mayr LM; Odefey C; Schutkowski M; Schmid FX
    Biochemistry; 1996 Apr; 35(17):5550-61. PubMed ID: 8611546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of ribonuclease T2 from Aspergillus oryzae.
    Kawata Y; Hamaguchi K
    Protein Sci; 1995 Mar; 4(3):416-20. PubMed ID: 7795525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR spectroscopy of alanine-based peptides: assignment of the amide I' modes for random coil and helix.
    Martinez G; Millhauser G
    J Struct Biol; 1995; 114(1):23-7. PubMed ID: 7772415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FT-IR spectroscopy indicates that Ca(2+)-binding to phosphorylated C-terminal fragments of the midsized neurofilament protein subunit results in beta-sheet formation and beta-aggregation.
    Holly S; Laczkó I; Fasman GD; Hollósi M
    Biochem Biophys Res Commun; 1993 Dec; 197(2):755-62. PubMed ID: 8267612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of point mutations on the structure and thermal stability of ribonuclease T1 in aqueous solution probed by Fourier transform infrared spectroscopy.
    Fabian H; Schultz C; Backmann J; Hahn U; Saenger W; Mantsch HH; Naumann D
    Biochemistry; 1994 Sep; 33(35):10725-30. PubMed ID: 8075073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal unfolding of helices of a C-peptide analogue of ribonuclease A in sodium dodecyl sulfate solution.
    Wu CS; Yang JT
    Biopolymers; 1990; 30(3-4):381-8. PubMed ID: 2279070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopy for the characterization of a model peptide-DNA interaction.
    Dev SB; Walters L
    Biopolymers; 1990 Jan; 29(1):289-99. PubMed ID: 2328291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease A studied by FT-IR spectroscopy.
    Takeda N; Kato M; Taniguchi Y
    Biochemistry; 1995 May; 34(17):5980-7. PubMed ID: 7727454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.
    Mayr LM; Willbold D; Landt O; Schmid FX
    Protein Sci; 1994 Feb; 3(2):227-39. PubMed ID: 8003959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotropic phase behavior of the platelet-activating factor: an infrared spectroscopic study.
    Mushayakarara EC; Mantsch HH
    Can J Biochem Cell Biol; 1985 Oct; 63(10):1071-6. PubMed ID: 4075223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intact disulfide bonds decelerate the folding of ribonuclease T1.
    Mücke M; Schmid FX
    J Mol Biol; 1994 Jun; 239(5):713-25. PubMed ID: 8014991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of a substructure library for the description and classification of protein secondary structure. II. Application to spectra-structure correlations in Fourier transform infrared spectroscopy.
    Prestrelski SJ; Byler DM; Liebman MN
    Proteins; 1992 Dec; 14(4):440-50. PubMed ID: 1438182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonuclease A revisited: infrared spectroscopic evidence for lack of native-like secondary structures in the thermally denatured state.
    Fabian H; Mantsch HH
    Biochemistry; 1995 Oct; 34(41):13651-5. PubMed ID: 7577955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IR spectra of lens crystallins.
    Rózyczka J; Gutsze A
    Lens Eye Toxic Res; 1991; 8(2-3):217-28. PubMed ID: 1911637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.