These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8355711)

  • 41. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids.
    Svetlov V; Cooper TG
    J Bacteriol; 1997 Dec; 179(24):7644-52. PubMed ID: 9401021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.
    Washburn BK; Esposito RE
    Mol Cell Biol; 2001 Mar; 21(6):2057-69. PubMed ID: 11238941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1.
    Shimizu M; Li W; Covitz PA; Hara M; Shindo H; Mitchell AP
    Nucleic Acids Res; 1998 May; 26(10):2329-36. PubMed ID: 9580682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional elements involved in the repression of ribosomal protein synthesis.
    Li B; Nierras CR; Warner JR
    Mol Cell Biol; 1999 Aug; 19(8):5393-404. PubMed ID: 10409730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid.
    Laurent BC; Carlson M
    Genes Dev; 1992 Sep; 6(9):1707-15. PubMed ID: 1516829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The dimerization/repression domain of RFX1 is related to a conserved region of its yeast homologues Crt1 and Sak1: a new function for an ancient motif.
    Katan-Khaykovich Y; Spiegel I; Shaul Y
    J Mol Biol; 1999 Nov; 294(1):121-37. PubMed ID: 10556033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D; Proft M; Entian KD
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of Met4, a yeast transcriptional activator responsive to S-adenosylmethionine.
    Kuras L; Thomas D
    Mol Cell Biol; 1995 Jan; 15(1):208-16. PubMed ID: 7799928
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two evolutionarily conserved repression domains in the Drosophila Kruppel protein differ in activator specificity.
    Hanna-Rose W; Licht JD; Hansen U
    Mol Cell Biol; 1997 Aug; 17(8):4820-9. PubMed ID: 9234738
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA-binding properties of the yeast Rgt1 repressor.
    Kim JH
    Biochimie; 2009 Feb; 91(2):300-3. PubMed ID: 18950675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae.
    Schwank S; Hoffmann B; Sch-uller HJ
    Curr Genet; 1997 Jun; 31(6):462-8. PubMed ID: 9211788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic interactions between SIN3 mutations and the Saccharomyces cerevisiae transcriptional activators encoded by MCM1, STE12, and SWI1.
    Wang H; Reynolds-Hager L; Stillman DJ
    Mol Gen Genet; 1994 Dec; 245(6):675-85. PubMed ID: 7830715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell signaling can direct either binary or graded transcriptional responses.
    Biggar SR; Crabtree GR
    EMBO J; 2001 Jun; 20(12):3167-76. PubMed ID: 11406593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae.
    Keng T
    Mol Cell Biol; 1992 Jun; 12(6):2616-23. PubMed ID: 1588959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection.
    Liu X; Lee CK; Granek JA; Clarke ND; Lieb JD
    Genome Res; 2006 Dec; 16(12):1517-28. PubMed ID: 17053089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation.
    Proft M; Serrano R
    Mol Cell Biol; 1999 Jan; 19(1):537-46. PubMed ID: 9858577
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The transcription factor Leu3 shows differential binding behavior in response to changing leucine availability.
    Börlin CS; Nielsen J; Siewers V
    FEMS Microbiol Lett; 2020 Jul; 367(13):. PubMed ID: 32589214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of leucine-independent DNA site occupancy of the yeast Leu3p transcriptional activator in vivo.
    Kirkpatrick CR; Schimmel P
    Mol Cell Biol; 1995 Aug; 15(8):4021-30. PubMed ID: 7623798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.