BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8356600)

  • 1. Cell transplantation of genetically altered cells on biodegradable polymer scaffolds in syngeneic rats.
    Gilbert JC; Takada T; Stein JE; Langer R; Vacanti JP
    Transplantation; 1993 Aug; 56(2):423-7. PubMed ID: 8356600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term expression of a retrovirally introduced beta-galactosidase gene in rodent cells implanted in vivo using biodegradable polymer meshes.
    Naughton BA; Dai Y; Sibanda B; Scharfmann R; San Roman J; Zeigler F; Verma IM
    Somat Cell Mol Genet; 1992 Sep; 18(5):451-62. PubMed ID: 1475711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Syngeneic central nervous system transplantation of genetically transduced mature, adult astrocytes.
    Selkirk SM; Greenberg SJ; Plunkett RJ; Barone TA; Lis A; Spence PO
    Gene Ther; 2002 Apr; 9(7):432-43. PubMed ID: 11938458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies.
    Saxena AK; Marler J; Benvenuto M; Willital GH; Vacanti JP
    Tissue Eng; 1999 Dec; 5(6):525-32. PubMed ID: 10611544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of cloned genetically modified human fibroblasts to assess long-term survival in vivo.
    Krueger GG; Jorgensen CM; Petersen MJ; Mansbridge JN; Morgan JR
    Hum Gene Ther; 1997 Mar; 8(5):523-32. PubMed ID: 9095404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local immunotherapy with interleukin-2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma.
    Rhines LD; Sampath P; DiMeco F; Lawson HC; Tyler BM; Hanes J; Olivi A; Brem H
    Neurosurgery; 2003 Apr; 52(4):872-9; discussion 879-80. PubMed ID: 12657184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa.
    Fisher LJ; Jinnah HA; Kale LC; Higgins GA; Gage FH
    Neuron; 1991 Mar; 6(3):371-80. PubMed ID: 1672072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes.
    Palmer TD; Rosman GJ; Osborne WR; Miller AD
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1330-4. PubMed ID: 1847517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.
    Himes BT; Liu Y; Solowska JM; Snyder EY; Fischer I; Tessler A
    J Neurosci Res; 2001 Sep; 65(6):549-64. PubMed ID: 11550223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A site-specific mutation of tyrosine hydroxylase reduces feedback inhibition by dopamine in genetically modified cells grafted in parkinsonian rats.
    Chang JW; Lee WY; Milstien S; Kang UJ
    J Neurochem; 2002 Oct; 83(1):141-9. PubMed ID: 12358737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically modified skin to treat disease: potential and limitations.
    Krueger GG; Morgan JR; Jorgensen CM; Schmidt L; Li HL; Kwan MK; Boyce ST; Wiley HS; Kaplan J; Petersen MJ
    J Invest Dermatol; 1994 Nov; 103(5 Suppl):76S-84S. PubMed ID: 7963689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds.
    Lin CY; Schek RM; Mistry AS; Shi X; Mikos AG; Krebsbach PH; Hollister SJ
    Tissue Eng; 2005; 11(9-10):1589-98. PubMed ID: 16259612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro.
    Atala A; Vacanti JP; Peters CA; Mandell J; Retik AB; Freeman MR
    J Urol; 1992 Aug; 148(2 Pt 2):658-62. PubMed ID: 1322466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen as matrix for neo-organ formation by gene-transfected fibroblasts.
    Rosenthal FM; Köhler G
    Anticancer Res; 1997; 17(2A):1179-86. PubMed ID: 9137468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels.
    Kim SS; Utsunomiya H; Koski JA; Wu BM; Cima MJ; Sohn J; Mukai K; Griffith LG; Vacanti JP
    Ann Surg; 1998 Jul; 228(1):8-13. PubMed ID: 9671060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo growth of transplanted genetically altered intestinal stem cells.
    Kawaguchi AL; Dunn JC; Fonkalsrud EW
    J Pediatr Surg; 1998 Apr; 33(4):559-63. PubMed ID: 9574751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesothelial cell-mediated gene therapy: feasibility of an ex vivo strategy.
    Nagy JA; Shockley TR; Masse EM; Harvey VS; Jackman RW
    Gene Ther; 1995 Aug; 2(6):393-401. PubMed ID: 7584114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation.
    Blomeier H; Zhang X; Rives C; Brissova M; Hughes E; Baker M; Powers AC; Kaufman DB; Shea LD; Lowe WL
    Transplantation; 2006 Aug; 82(4):452-9. PubMed ID: 16926587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts.
    Moullier P; Maréchal V; Danos O; Heard JM
    Transplantation; 1993 Aug; 56(2):427-32. PubMed ID: 8356601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic delivery of a recombinant protein by genetically modified mesothelial cells reseeded on the parietal peritoneal surface.
    Nagy JA; Shockley TR; Masse EM; Harvey VS; Hoff CM; Jackman RW
    Gene Ther; 1995 Aug; 2(6):402-10. PubMed ID: 7584115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.