These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 835702)

  • 21. Electrical spike potentials of the small bowel: a comparative study of recordings obtained from muscular implanted and intraluminal suction electrodes.
    Fleckenstein P; Oigaard A
    Am J Dig Dis; 1976 Nov; 21(11):996-9. PubMed ID: 984022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of vagotomy on gastrointestinal myoelectric pattern of the conscious dog].
    Takakuwa K
    Nihon Heikatsukin Gakkai Zasshi; 1982 Mar; 18(1):19-38. PubMed ID: 7143839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholecystokinin-dependent selective inhibitory effect on 'minute rhythm' in the ovine small intestine.
    Romański KW
    Animal; 2009 Feb; 3(2):275-86. PubMed ID: 22444231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actions of cholecystokinin octapeptide on smooth muscle of isolated dog intestine.
    Stewart JJ; Burks TF
    Am J Physiol; 1977 Mar; 232(3):E306-10. PubMed ID: 842663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of fasting and fed myoelectric activity in rat small intestine: evaluation by computer analysis.
    Bränström R; Hellström PM
    Acta Physiol Scand; 1996 Sep; 158(1):53-62. PubMed ID: 8876748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of bethanechol, gastrin I, or cholecystokinin on myoelectrical activity.
    Snape WJ; Cohen S
    Am J Physiol; 1979 Apr; 236(4):E458-63. PubMed ID: 434201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin.
    Marik F; Code CF
    Gastroenterology; 1975 Aug; 69(2):387-95. PubMed ID: 1150047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Inhibition of the interdigestive myoelectric cycles in dogs by a single administration of bile acids into the branch of the cranial mesenteric artery].
    Romański K; Peeters TL; Janssens J; Vandeweerd M; Vantrappen G
    Pol Arch Weter; 1990; 30(1-2):71-90. PubMed ID: 2132650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurohormonal mechanism of pancreatic exocrine secretion stimulated by sodium oleate and L-tryptophan in dogs.
    Jo YH; Lee YL; Lee KY; Chang TM; Chey WY
    Am J Physiol; 1992 Jul; 263(1 Pt 1):G12-6. PubMed ID: 1636708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of gastric emptying is a physiological action of cholecystokinin.
    Debas HT; Farooq O; Grossman MI
    Gastroenterology; 1975 May; 68(5 Pt 1):1211-7. PubMed ID: 1126597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potentiating effect of secretin on cholecystokinin-stimulated pancreatic secretion in dogs.
    Chey WY; Lee KY; Chang TM; Chen YF; Millikan L
    Am J Physiol; 1984 Mar; 246(3 Pt 1):G248-52. PubMed ID: 6322594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of abdominal surgery on intestinal myoelectric activity in the dog.
    Carmichael MJ; Weisbrodt NW; Copeland EM
    Am J Surg; 1977 Jan; 133(1):34-8. PubMed ID: 835776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of canine interdigestive proximal gastric motility by cholecystokinin octapeptide.
    Schang JC; Kelly KA
    Am J Physiol; 1981 Mar; 240(3):G217-20. PubMed ID: 7212071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The propagation of segmental contractions along the small intestine.
    Grivel ML; Ruckebusch Y
    J Physiol; 1972 Dec; 227(2):611-25. PubMed ID: 4647272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs.
    Konturek SJ; Jaworek J; Cieszkowski M; Pawlik W; Kania J; Bloom SR
    Am J Physiol; 1983 Jun; 244(6):G590-8. PubMed ID: 6305210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peripheral and central cholecystokinin receptors regulate postprandial intestinal motility in the rat.
    Rodríguez-Membrilla A; Martínez V; Vergara P
    J Pharmacol Exp Ther; 1995 Oct; 275(1):486-93. PubMed ID: 7562590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opiate nerves mediate feline pyloric response to intraduodenal amino acids.
    Reynolds JC; Ouyang A; Cohen S
    Am J Physiol; 1985 Mar; 248(3 Pt 1):G307-12. PubMed ID: 3976889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of pancreatic enzymes on release of cholecystokinin-pancreozymin in response to fat.
    Watanabe S; Lee KY; Chang TM; Berger-Ornstein L; Chey WY
    Am J Physiol; 1988 Jun; 254(6 Pt 1):G837-42. PubMed ID: 3377083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of a meal and gut hormones on plasma motilin and duodenal motility in dog.
    Lee KY; Kim MS; Chey WY
    Am J Physiol; 1980 Apr; 238(4):G280-3. PubMed ID: 7377304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional differences in the effects of various doses of cerulein upon the small-intestinal migrating motor complex in fasted and non-fasted sheep.
    Romański KW
    J Anim Physiol Anim Nutr (Berl); 2007 Feb; 91(1-2):29-39. PubMed ID: 17217388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.