These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8357170)

  • 61. Two murine natural polyreactive autoantibodies are encoded by nonmutated germ-line genes.
    Baccala R; Quang TV; Gilbert M; Ternynck T; Avrameas S
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4624-8. PubMed ID: 2499887
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Predominant VH genes expressed in innate antibodies are associated with distinctive antigen-binding sites.
    Seidl KJ; Wilshire JA; MacKenzie JD; Kantor AB; Herzenberg LA; Herzenberg LA
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2262-7. PubMed ID: 10051629
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapsyn antibodies in myasthenia gravis.
    Agius MA; Zhu S; Kirvan CA; Schafer AL; Lin MY; Fairclough RH; Oger JJ; Aziz T; Aarli JA
    Ann N Y Acad Sci; 1998 May; 841():516-21. PubMed ID: 9668284
    [No Abstract]   [Full Text] [Related]  

  • 64. B cells in autoimmune diseases: insights from analyses of immunoglobulin variable (Ig V) gene usage.
    Foreman AL; Van de Water J; Gougeon ML; Gershwin ME
    Autoimmun Rev; 2007 Jun; 6(6):387-401. PubMed ID: 17537385
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Experimental myasthenia gravis is inhibited by receptor-antireceptor complexes.
    Barkas T; Simpson JA
    J Clin Lab Immunol; 1982 Apr; 7(3):223-7. PubMed ID: 7097749
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental models of myasthenia gravis: lessons in autoimmunity and progress toward better forms of treatment.
    Pachner AR
    Yale J Biol Med; 1987; 60(2):169-77. PubMed ID: 3495075
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Somatic diversification of the S107 (T15) VH11 germ-line gene that encodes the heavy-chain variable region of antibodies to double-stranded DNA in (NZB x NZW)F1 mice.
    Behar SM; Scharff MD
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):3970-4. PubMed ID: 3131767
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enzyme-linked immunosorbent assay for antibody against the nicotinic acetylcholine receptor in human myasthenia gravis.
    Kawanami S; Tsuji R; Oda K
    Ann Neurol; 1984 Feb; 15(2):195-200. PubMed ID: 6367620
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reaction of myasthenic antibodies with heart & brain nicotinic acetylcholine receptors.
    Asthana D; Jaffery NF; Kumar R; Ahuja GK; Jailkhani BL
    Indian J Med Res; 1987 Oct; 86():493-9. PubMed ID: 3127338
    [No Abstract]   [Full Text] [Related]  

  • 70. alpha-Bungarotoxin displacing antibody in myasthenia gravis.
    Barkas T; Simpson JA
    J Clin Lab Immunol; 1982 Nov; 9(2):113-7. PubMed ID: 7154056
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ hybridization analysis of immunoglobulin VH gene family expression in rheumatoid arthritis.
    Rundle CH; Schroeder HW; Koopman WJ
    Ann N Y Acad Sci; 1995 Sep; 764():453-6. PubMed ID: 7486564
    [No Abstract]   [Full Text] [Related]  

  • 72. Characterization of somatically mutated S107 VH11-encoded anti-DNA autoantibodies derived from autoimmune (NZB x NZW)F1 mice.
    Behar SM; Lustgarten DL; Corbet S; Scharff MD
    J Exp Med; 1991 Mar; 173(3):731-41. PubMed ID: 1900082
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Somatic mutation in autoantibody-associated VH genes of circulating IgM+IgD+ B cells.
    Munakata Y; Saito S; Hoshino A; Muryoi T; Hirabayashi Y; Shibata S; Miura T; Ishii T; Funato T; Sasaki T
    Eur J Immunol; 1998 May; 28(5):1435-44. PubMed ID: 9603448
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of acetylcholine receptor antibodies in myasthenia gravis.
    Appel SH; Elias SB; Chauvin P
    Fed Proc; 1979 Sep; 38(10):2381-5. PubMed ID: 478014
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Suppression of antibody responses to the acetylcholine receptor by natural antibodies.
    Sundblad A; Hauser S; Holmberg D; Cazenave PA; Coutinho A
    Eur J Immunol; 1989 Aug; 19(8):1425-30. PubMed ID: 2776827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional inhibition of acetylcholine receptors by antibodies in myasthenic sera.
    Hall ZW; Pizzighella S; Gu Y; Vicini S; Schuetze SM
    Ann N Y Acad Sci; 1987; 505():272-85. PubMed ID: 2446552
    [No Abstract]   [Full Text] [Related]  

  • 77. Complicating autoimmune diseases in myasthenia gravis: a review.
    Nacu A; Andersen JB; Lisnic V; Owe JF; Gilhus NE
    Autoimmunity; 2015; 48(6):362-8. PubMed ID: 25915571
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Immunoglobulin heavy chain gene associations in myasthenia gravis: new evidence for disease heterogeneity.
    Demaine A; Willcox N; Janer M; Welsh K; Newsom-Davis J
    J Neurol; 1992 Jan; 239(1):53-6. PubMed ID: 1541972
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The hu-SCID myasthenic mouse. A new tool for the investigation of seronegative myasthenia gravis.
    Martino G; Grimaldi LM; Wollmann RL; Bongioanni P; Quintans J; Arnason BG
    Ann N Y Acad Sci; 1993 Jun; 681():303-5. PubMed ID: 8357176
    [No Abstract]   [Full Text] [Related]  

  • 80. Proliferative responses to acetylcholine receptor peptides in myasthenia gravis.
    Berrih-Aknin S; Cohen-Kaminsky S; Neumann D; Bach JF; Fuchs S
    Ann N Y Acad Sci; 1988; 540():504-5. PubMed ID: 2462824
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.