These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8357243)

  • 1. Combined effects of sulfites, temperature, and agitation time on production of glycerol in grape juice by Saccharomyces cerevisiae.
    Gardner N; Rodrigue N; Champagne CP
    Appl Environ Microbiol; 1993 Jul; 59(7):2022-8. PubMed ID: 8357243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production.
    Kutyna DR; Varela C; Stanley GA; Borneman AR; Henschke PA; Chambers PJ
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1175-84. PubMed ID: 21989563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration effect of Riesling Icewine juice on yeast performance and wine acidity.
    Pigeau GM; Bozza E; Kaiser K; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1691-8. PubMed ID: 18038457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.
    Nadai C; Campanaro S; Giacomini A; Corich V
    Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of physicochemical factors on glycerol production by simultaneous cultures of wine micro-organisms using the response surface method.
    Ale CE; Bru E; Strasser de Saad AM; Pasteris SE
    J Appl Microbiol; 2014 Nov; 117(5):1336-47. PubMed ID: 25123413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations.
    Crosato G; Nadai C; Carlot M; Garavaglia J; Ziegler DR; Rossi RC; De Castilhos J; Campanaro S; Treu L; Giacomini A; Corich V
    FEMS Yeast Res; 2020 Jun; 20(4):. PubMed ID: 32436567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.
    Aranda A; Jiménez-Martí E; Orozco H; Matallana E; Del Olmo M
    J Agric Food Chem; 2006 Aug; 54(16):5839-46. PubMed ID: 16881685
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation.
    Berovic M; Herga M
    Biotechnol Lett; 2007 Jun; 29(6):891-4. PubMed ID: 17387435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts.
    Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M
    Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae.
    Ramos CL; Duarte WF; Freire AL; Dias DR; Eleutherio EC; Schwan RF
    Braz J Microbiol; 2013; 44(3):935-44. PubMed ID: 24516430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycerol production by Oenococcus oeni during sequential and simultaneous cultures with wine yeast strains.
    Ale CE; Farías ME; Strasser de Saad AM; Pasteris SE
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S200-9. PubMed ID: 24752716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol production by yeasts under osmotic and sulfite stress.
    Petrovska B; Winkelhausen E; Kuzmanova S
    Can J Microbiol; 1999 Aug; 45(8):695-9. PubMed ID: 10528402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.
    Tilloy V; Ortiz-Julien A; Dequin S
    Appl Environ Microbiol; 2014 Apr; 80(8):2623-32. PubMed ID: 24532067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts.
    Nadai C; Treu L; Campanaro S; Giacomini A; Corich V
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):797-813. PubMed ID: 26615396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard.
    Cappello MS; Bleve G; Grieco F; Dellaglio F; Zacheo G
    J Appl Microbiol; 2004; 97(6):1274-80. PubMed ID: 15546418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast's balancing act between ethanol and glycerol production in low-alcohol wines.
    Goold HD; Kroukamp H; Williams TC; Paulsen IT; Varela C; Pretorius IS
    Microb Biotechnol; 2017 Mar; 10(2):264-278. PubMed ID: 28083938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of sulfite on the yeast Saccharomyces cerevisiae.
    Schimz KL
    Arch Microbiol; 1980 Mar; 125(1-2):89-95. PubMed ID: 6992733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.