These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 8357247)
1. Fate of Agrobacterium radiobacter K84 in the environment. Stockwell VO; Moore LW; Loper JE Appl Environ Microbiol; 1993 Jul; 59(7):2112-20. PubMed ID: 8357247 [TBL] [Abstract][Full Text] [Related]
2. Evidence of Biological Control of Agrobacterium tumefaciens Strains Sensitive and Resistant to Agrocin 84 by Different Agrobacterium radiobacter Strains on Stone Fruit Trees. López MM; Gorris MT; Salcedo CI; Montojo AM; Miró M Appl Environ Microbiol; 1989 Mar; 55(3):741-6. PubMed ID: 16347881 [TBL] [Abstract][Full Text] [Related]
3. Biological control of crown gall of grapevine, rose, and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Kawaguchi A; Inoue K; Ichinose Y Phytopathology; 2008 Nov; 98(11):1218-25. PubMed ID: 18943411 [TBL] [Abstract][Full Text] [Related]
4. Use of Agrobacterium radiobacter in agricultural ecosystems. Moore LW Microbiol Sci; 1988 Mar; 5(3):92-5. PubMed ID: 3079224 [TBL] [Abstract][Full Text] [Related]
5. Biological Control of Agrobacterium tumefaciens, Colonization, and pAgK84 Transfer with Agrobacterium radiobacter K84 and the Tra Mutant Strain K1026. Vicedo B; Peñalver R; Asins MJ; López MM Appl Environ Microbiol; 1993 Jan; 59(1):309-15. PubMed ID: 16348854 [TBL] [Abstract][Full Text] [Related]
6. The S-adenosyl-L-homocysteine hydrolase gene ahcY of Agrobacterium radiobacter K84 is required for optimal growth, antibiotic production, and biocontrol of crown gall disease. Penyalver R; Oger PM; Su S; Alvarez B; Salcedo CI; López MM; Farrand SK Mol Plant Microbe Interact; 2009 Jun; 22(6):713-24. PubMed ID: 19445596 [TBL] [Abstract][Full Text] [Related]
7. Effect of antibiosis on antagonist dose-plant disease response relationships for the biological control of crown gall of tomato and cherry. Johnson KB; Dileone JA Phytopathology; 1999 Oct; 89(10):974-80. PubMed ID: 18944744 [TBL] [Abstract][Full Text] [Related]
8. Cocolonization of the rhizosphere by pathogenic agrobacterium strains and nonpathogenic strains K84 and K1026, used for crown gall biocontrol. Penyalver R; Lopez MM Appl Environ Microbiol; 1999 May; 65(5):1936-40. PubMed ID: 10223983 [TBL] [Abstract][Full Text] [Related]
9. Survival of Agrobacterium radiobacter K84 on various carriers for crown gall control. Pesenti-Barili B; Ferdani E; Mosti M; Degli-Innocenti F Appl Environ Microbiol; 1991 Jul; 57(7):2047-51. PubMed ID: 1892394 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease. Clare BG; Kerr A; Jones DA Plasmid; 1990 Mar; 23(2):126-37. PubMed ID: 2194227 [TBL] [Abstract][Full Text] [Related]
11. Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Penyalver R; Oger P; López MM; Farrand SK Appl Environ Microbiol; 2001 Feb; 67(2):654-64. PubMed ID: 11157228 [TBL] [Abstract][Full Text] [Related]
12. [Isolation and identification of Agrobacterium spp. from cherry crown galls and their sensitivities to agrocin 84]. Wang H; Sui X; Li J; Dai X; Ma D Wei Sheng Wu Xue Bao; 1998 Oct; 38(5):381-5. PubMed ID: 12549403 [TBL] [Abstract][Full Text] [Related]
13. Deletion derivatives of pAgK84 and their use in the analysis of Agrobacterium plasmid functions. Farrand SK; Wang CL; Hong SB; O'Morchoe SB; Slota JE Plasmid; 1992 Nov; 28(3):201-12. PubMed ID: 1461939 [TBL] [Abstract][Full Text] [Related]
14. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Kim JG; Park BK; Kim SU; Choi D; Nahm BH; Moon JS; Reader JS; Farrand SK; Hwang I Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8846-51. PubMed ID: 16731618 [TBL] [Abstract][Full Text] [Related]
15. Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. Hawes MC; Smith LY J Bacteriol; 1989 Oct; 171(10):5668-71. PubMed ID: 2793831 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of local Agrobacterium tumefaciens strains to streptomycetes isolates from Jordan soils. Saadoun I; Al-Momani F J Basic Microbiol; 2008 Jun; 48(3):213-6. PubMed ID: 18506907 [TBL] [Abstract][Full Text] [Related]
17. Bacillus velezensis strain MBY2, a potential agent for the management of crown gall disease. Ben Gharsa H; Bouri M; Mougou Hamdane A; Schuster C; Leclerque A; Rhouma A PLoS One; 2021; 16(6):e0252823. PubMed ID: 34129651 [TBL] [Abstract][Full Text] [Related]
18. Insight into the Bacterial Endophytic Communities of Peach Cultivars Related to Crown Gall Disease Resistance. Li Q; Guo R; Li Y; Hartman WH; Li S; Zhang Z; Tringe SG; Wang H Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824451 [TBL] [Abstract][Full Text] [Related]
19. Behavior of a Virulent Strain Derived from Agrobacterium radiobacter Strain K84 After Spontaneous Ti Plasmid Acquisition. López-López MJ; Vicedo B; Orellana N; Piquer J; López MM Phytopathology; 1999 Apr; 89(4):286-92. PubMed ID: 18944772 [TBL] [Abstract][Full Text] [Related]
20. Major biocontrol of plant tumors targets tRNA synthetase. Reader JS; Ordoukhanian PT; Kim JG; de Crécy-Lagard V; Hwang I; Farrand S; Schimmel P Science; 2005 Sep; 309(5740):1533. PubMed ID: 16141066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]