These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 8357305)

  • 1. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical basis of optimal scoliosis surgical correction.
    Ghista DN; Viviani GR; Subbaraj K; Lozada PJ; Srinivasan TM; Barnes G
    J Biomech; 1988; 21(2):77-88. PubMed ID: 3350831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation.
    Duke K; Aubin CE; Dansereau J; Labelle H
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):923-31. PubMed ID: 16061317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presurgical finite element simulation of scoliosis correction.
    Subbaraj K; Ghista DN; Viviani GR
    J Biomed Eng; 1989 Jan; 11(1):9-18. PubMed ID: 2927103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of forces acting on implant rods and degree of scoliosis correction.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):122-8. PubMed ID: 23273729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications.
    Henao J; Aubin CÉ; Labelle H; Arnoux PJ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):901-10. PubMed ID: 26324393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrective force analysis for scoliosis from implant rod deformation.
    Salmingo R; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):545-50. PubMed ID: 22321374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the intervertebral disc in correction of scoliotic curves. A theoretical model of idiopathic scoliosis pathogenesis.
    Grivas TB; Vasiliadis ES; Rodopoulos G; Bardakos N
    Stud Health Technol Inform; 2008; 140():33-6. PubMed ID: 18809995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical modeling and analysis of a direct incremental segmental translation system for the instrumentation of scoliotic deformities.
    Wang X; Aubin CE; Crandall D; Labelle H
    Clin Biomech (Bristol, Avon); 2011 Jul; 26(6):548-55. PubMed ID: 21334124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous model of the human scoliotic spine.
    Noone G; Mazumdar J; Ghista D
    J Biomed Eng; 1991 Nov; 13(6):473-80. PubMed ID: 1837575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of spino-pelvic parameters in adolescent idiopathic scoliosis after spinal instrumentation and fusion: a case study.
    Pasha S; Aubin CE; Labelle H; Parent S; Mac-Thiong JM
    Stud Health Technol Inform; 2012; 176():125-8. PubMed ID: 22744474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for in vivo measurement of implant rod three-dimensional geometry during scoliosis surgery.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    J Biomech Eng; 2012 May; 134(5):054502. PubMed ID: 22757497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of rib cage surgery for the management of scoliotic deformities.
    Gréalou L; Aubin CE; Sevastik JA; Labelle H
    Stud Health Technol Inform; 2002; 88():345-9. PubMed ID: 15456059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analyses of surgical correction techniques in idiopathic scoliosis: significance of bi-planar characteristics of scoliotic spines.
    Jayaraman G; Zbib HM; Jacobs RR
    J Biomech; 1989; 22(5):427-37. PubMed ID: 2777817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D finite element simulation of Cotrel-Dubousset correction.
    Lafage V; Dubousset J; Lavaste F; Skalli W
    Comput Aided Surg; 2004; 9(1-2):17-25. PubMed ID: 15792933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posterior vertebral column resection for correction of rigid spinal deformity curves greater than 100°.
    Xie J; Wang Y; Zhao Z; Zhang Y; Si Y; Li T; Yang Z; Liu L
    J Neurosurg Spine; 2012 Dec; 17(6):540-51. PubMed ID: 23062175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of the Scoliotic Spine: Effect of Scoliosis Braces.
    Havey RM; Gavin TM; Patwardhan AG
    Spine (Phila Pa 1976); 2016 Apr; 41 Suppl 7():S18-9. PubMed ID: 26780611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.